Сделать стартовой |  Добавить в избранное  
Главная Написать письмо Карта сайта
  • Фильтры ФМФ и ФММ. Описание. Преимущества и недостатки.

    Магнитный фильтр является устройством, состоящим из нескольких постоянных магнитов, обладающих высокой мощностью. Жидкость передвигается перпендикулярно магнитным силовым линиям и теряет растворенные в ней загрязнения. Под действием магнитного поля вода структурно перестраивается (коллоидные примеси превращаются в центры кристаллизации, возникает легко снимающийся с поверхности воды тонкодисперсный слой). Избавление труб от накипи и отложений солей также   происходит благодаря воздействию магнитного поля на ионы загрязнителя.

    Преимуществом магнитного фильтра является высокая эффективность очистки воды от примесей и загрязнений. Помимо этого, при эксплуатации магнитных фильтров требуется регулярное использование регенерационных растворов. Такие фильтры применяются для очистки воды на металлургических предприятиях или котельных, но ввиду того, что они достаточно дорогостоящие, вместо магнитных преобразователей зачастую используются магнитные фильтры грубой очистки.

     

    Наиболее распространенными типами магнитных фильтров являются:

    фильтр магнитно-механический фланцевый (или фильтр магнитно-фланцевый) — ФМФ;

      — фильтр магнитный муфтовый — ФММ.

     

    Фильтры магнитно-механические фланцевые (ФМФ) внешне похожи на фильтры грубой очистки от взвешенных частиц, производятся из чугуна и отличаются надежной степенью защиты от солей железа (ферросоединений). Магнитно-фланцевые фильтры очищают воду от таких загрязнений, как песок, илистые отложения, соединения железа и прочих механических примесей. Корпус фильтра ФМФ оснащен тремя отводами, необходимыми для подачи и выхода воды, а так же еще одним отводом, предназначенным для оттока шлама. Помимо этого, в фильтре установлена стальная сетка и пробка для герметичности. Фланцевое соединение обеспечивает доступ воды от колбы фильтра к сетке. Диаметр фильтра ФМФ составляет не больше 200 мм, ввиду того, что изгиб фланца относительно корпуса может деформироваться.

    Фильтр ФММ латунный

    Очищение воды происходит в два этапа. Сначала взвешенные частицы задерживаются специальной сеткой, после чего происходит очистка воды от солей железа под действием магнитного поля.

    Фильтр магнитно-механический фланцевый применяют как для очистки холодной воды, так и для очистки горячей.

    Неоспоримыми  преимуществами магнитно-фланцевых фильтров является простота конструкции, высокая степень эффективности очистки от ферросоединений, возможность эксплуатации при любых температурах, невысокая стоимость, а также простота установки и тех. Обслуживания.

    К недостаткам фильтров ФМФ можно отнести низкую степень очистки от других примесей и солей.

    Фильтры магнитно-муфтовые ФММ по своему действию похожи на ранее описанные фильтры ФМФ, но Фильтры ФМФ фланцевые стальныеотличаются тем, что муфтовое соединение

    приводит к минимальной деформации изгиба фланца относительно корпуса, а соответственно, его диаметр составляет не более 50 мм.

    Фильтр магнитный муфтовый  имеет высокую герметичность. Фильтр ФММ применяется в случае чрезвычайно высокого содержания в воде ферросоединений. Также этот тип фильтров используется там, где из-за устаревшего оборудования подачи воды образовано вторичное засорение ржавчиной. Недостатком фильтра магнитно-муфтового является то, что прочность на месте резьбового соединения ниже, нежели у фланцевого.

    Заказать фильтры из наличия возможно через форму заказа на сайте, а также у менеджеров отдела продаж по телефону: +7 (343) 213-88-89

  • Метки , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Фазоразделительная арматура: конденсатоотводчики

    Конденсатоотводчики используются для вывода из системы конденсата, не участвующего в рабочем или технологическом процессе. Конденсатоотводчики действуют автономно, выпуская конденсат периодически, по мере его накопления.
    Действие конденсатоотводчика основано на разнице в плотностях конденсата и пара или в их температурах. В настоящее время используются в основном термостатические, поплавковые или термодинамические конденсатоотводчики. В первых при испарении жидкости, находящейся в сильфоне термостата, закрывается седло, когда с повышением температуры после выгрузки конденсата начинает поступать пар, во вторых (поплавковых) выпуском конденсата управляет поплавок (прямой или перевернутый), в третьих (термодинамических) используется термодинамический эффект, возникающий при протекании пара между плоской пластинкой и седлом. Наибольшее распространение в настоящее время получили термодинамические конденсатоотводчики, которые имеют малые габариты и массу, простую конструкцию и надежны в работе, но они применимы только для выпуска горячего конденсата. Для выпуска охлажденного конденсата используются поплавковые конденсатоотводчики.

    Краткие технические характеристики конденсатоотводчиков
    Ниже приведены краткие технические характеристики и габаритные размеры некоторых конденсатоотводчиков арматуры общетехнического назначения из числа наиболее часто применяемых конструкций.
    Конденсатоотводчики термостатические с муфтовым и цапковым присоединениями нз ковкого чугуна ру = 0,6 МПа (таОл. 10.1). Условное обозначение 45кч6бр. Предназначаются для паропроводов и различного типа пароприемников с целью автоматического отвода конденсата при температуре до 150° С. Конструкция, основные размеры и технические требования регламентированы ГОСТ 14188—69. Входной патрубок присоединяется к паропроводу или паро- приемнику о помощью цапки о накидной гайкой и ниппелем, выходной патрубок (муфтовый с дюймовой трубной резьбой) выполняется по ГОСТ 6527—74. Конденсатоотводчики могут быть установлены в любом рабочем положении. Корпус изготовляется из ковкого чугуна, термостат — из полутомпака, прокладка — из паронита. Уплотнение запорного органа обеспечивается золотником и седлом в корпусе из латуни. На прочность испытываются при пробном давлении рпр = 0,9 МПа. При рабочей температуре tр= 150° С допускается рабочее давление Рр = 0,57 МПа.

    10.1. Габаритные размеры и масса термостатических конденсатоотводчиков 45кч6бр

    Конденсатоотводчики термодинамическиемуфтовые чугунные на ру = 1,6 МПа (табл. 10.2). Условное обозначение 45ч12нж. Предназначаются для паропроводов и различного типа пароприемников с целью автоматического отвода конденсата при температуре до 200° С. Конструкция, основные размеры и технические требования регламентированы ГОСТ 12866—67. К паропроводу или пароприемнику присоединяются при помощи резьбовых муфт с дюймовой трубной резьбой по ГОСТ 6527—74. Конденсатоотводчики устанавливаются в рабочем положении крышкой вверх. Корпус и крышка изготовляются из чугуна, прокладка — из паронита. Уплотнение запорного органа обеспечивается седлом и тарелкой из стали 20X13. На прочность испытываются при пробном давлении Pпр= 2,4 МПа. Рабочее давление допускается до Pр = 1,6 МПа при рабочей температуре среды tр < 120° С и до рр = 1,5 МПа при tр= 200° С.

    Габаритные размеры и масса термодинамических конденсатоотводчиков 45ч12нж

    Конденсатоотводчики термодинамические муфтовые с обводом чугунные на Ру= 1,6 МПа (табл. 10.3). Условное обозначение 45ч15нж. Предназначаются для паропроводов и различного типа пароприемников с целью автоматического отвода конденсата при температуре до 200° С. К паропроводу или пароприемнику присоединяются при помощи резьбовых муфт с дюймовой трубной резьбой по ГОСТ 6527—74. Конденсатоотводчики устанавливаются в рабочем положении крышкой вверх. Для принудительного открытия и продувки системы имеется специальное устройство — обвод. Корпус и крышка изготовляются из чугуна, прокладка — из паронита. Уплотнение запорного органа обеспечивается седлом и тарелкой из стали 20X13. На прочность испытываются при пробном давлении Pпр = 2,4 МПа. Рабочее давление допускается до Рр= 1,6 МПа при рабочей температуре tр < 120° С и до Pр = 1,5 МПа при t = 200° С.

    10.3. Габаритные размеры и масса термодинамических коиденсатоотводчиков с обводом 45ч15нж

    10.3. Габаритные размеры и масса термодинамических коиденсатоотводчиков с обводом 45ч15нж

    10.4. Габаритные размеры и масса термодинамических конденсатоотводчиков 45с13нж

    10.4. Габаритные размеры и масса термодинамических конденсатоотводчиков 45с13нж

    Конденсатоотводчики термодинамические с патрубками под приварку стальные на ру = 4 МПа (табл. 10.4). Условное обозначение 45с13нж. Предназначаются для паропроводов и различного типа пароприемников с целью автоматического отвода конденсата при температуре до 300° С. К паропроводу или пароприемнику конденсатоотводчики присоединяются приваркой, для чего они снабжены соответствующими патрубками под приварку. Устанавливаются в рабочем положении крышкой вверх. Корпус и крышка изготовляются из стали, прокладка — из паронита. Уплотнение запорного органа обеспечивается тарелкой из стали 20X13. На прочность испытываются при пробном давлении Рпр = 6,0 МПа. Рабочее давление допускается до Рр = 4,0 МПа при рабочей температуре tp < 200° С и до рр = 3,2 МПа при tр = 300° С.
    Конденсатоотводчики термодинамические со штуцерным присоединением стальные на Pу = 4 МПа (табл. 10.5). Условное обозначение 45с16нж. Предназначаются для паропроводов и различного типа паропрИемников с целью автоматического отвода конденсата при температуре до 250° С. К паропроводу или пароприемнику присоединяются при помощи резьбовых штуцеров, размеры которых установлены ГОСТ 2822—68.

    10.5. Габаритные размеры и масса термодинамических конденсатоотводчиков 45с16нж

    10.5. Габаритные размеры и масса термодинамических конденсатоотводчиков 45с16нж

    10.5. Габаритные размеры и масса термодинамических конденсатоотводчиков 45с16нж

    Конденсатоотводчики устанавливаются в рабочем положении крышкой вверх. Корпус и крышка изготовляются из стали, прокладка — из паронита. Уплотнение запорного органа обеспечивается тарелкой из стали 20X13. На прочность испытываются при пробном давлении Рпр = 6 МПа. Рабочее давление допускается до Рр = 4 МПа при рабочей температуре tр < 200°С и до Pр = 3,6 МПа при tр = 250° С.

    10.6. Габаритные размеры и масса термодинамических конденсатоотводчиков 45с14нж

    10.6. Габаритные размеры и масса термодинамических конденсатоотводчиков 45с14нж

    Конденсатоотводчики термодинамические фланцевые стальные на Ру = 4 МПа (табл. 10.6). Условное обозначение 45с14нж. Предназначаются для паропроводов и различного типа пароприемников с целью автоматического отвода конденсата при температуре до 225° С. К паропроводу или пароприемнику присоединяются при помощи фланцев, размеры которых установлены ГОСТ 12823—67. Конденсатоотводчики могут быть установлены в рабочем положении крышкой вверх. Корпус и крышка изготовляются из стали, прокладка — из паронита.

    10.7. Габаритные размеры и масса термодинамических конденсатоотводчиков 45с22нж

    10.7. Габаритные размеры и масса термодинамических конденсатоотводчиков 45с22нж

  • Метки , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Системы водяного отопления и горячего водоснабжения: их назначение и устройство

    Системы водяного отопления, их назначение и виды

    Для отопления помещений используются местные и центральные системы отопления.

    Местной называется такая система отопления, в которой тепло используется непосредственно в отапливаемом помещении — печное отопление, газовые или электрические водонагреватели.

    Центральной называется система отопления, в которой генератор тепла (котел или теплообменник) находится за пределами отапливаемого помещения.

    В зависимости от количества отапливаемых домов системы центрального отопления — домовые, групповые, квартальные и районные, а от используемого теплоносителя (вода, пар или воздух) — водяные, паровые или воздушные.

    Системы водяного отопления наиболее распространены, гигиеничны и легко регулируются в соответствии с температурой окружающего воздуха.

    Системы парового отопления не гигиеничны из-за пригорания пыли, которая находится в воздухе, на поверхности нагревательных приборов, плохо поддаются регулированию и из-за этого используются, как исключение, для производственных, коммунальных и общественных помещений.

    Воздушные системы отопления из-за плохого регулирования можно использовать только для отопления больших промышленных помещений и магазинов.

    Центральные системы водяного отопления подразделяются: по способу циркуляции — с естественной и искусственной; по размещению распределительных трубопроводов — с верхней и нижней разводкой;
    по схеме присоединения нагревательных приборов к стоякам — однотрубные и двухтрубные.

    Системы отопления с естественной циркуляцией. Работа системы отопления с естественной циркуляцией основана на свойстве воды увеличиваться в объеме при нагревании и уменьшаться — при охлаждении. С увеличением температуры плотность воды уменьшается, т. е. вода в обратном стояке — тяжелее, чем в подающем и благодаря этому охлажденная вода опускается вниз, своей массой вытесняет нагретую воду из котла в трубопровод горячей воды и поступает в котел, где нагревается.

    Системы отопления с естественной циркуляцией допускаются только в малоэтажных зданиях с индивидуальной котельной при радиусе действия не более 30 м.

    Системы отопления с искусственной циркуляцией. Для многоэтажных домов с радиусом действия более 30 м используются системы отопления с искусственной (насосной) циркуляцией, которая наиболее полно обеспечивает преодоление сопротивления движению воды по трубам.

    При эксплуатации система отопления всегда заполнена водой. Установленные в котельной циркуляционные насосы должны создавать напор, необходимый для преодоления сопротивления сети и подключенных систем отопления.
    Высокое давление в трубопроводах дает возможность одной котельной обогревать большое количество домов.
    Двухтрубные системы отопления. Двухтрубными системы называются потому, что в них используются для питания нагревзгельных приборов и для отвода охлажденной воды используются две самостоятельные трубы. Такие системы водяного отопления с естественной и искусственной циркуляцией могут быть с верхней или нижней разводкой.

    В системе с верхней разводкой нагретая в котле вода по главному стояку подается вверх в разводящую магистраль, которая проходит по чердаку или техническому этажу помещения и по распределительным стоякам движется сверху вниз, поступая в нагревательные приборы.

    Воздух из котла, трубопроводов и нагревательных приборов удаляется через клапаны, которые установлены в верхних точках ото¬пительной системы.
    В системах отопления с нижней разводкой вода из котла поступает в подающий трубопровод, который проложен в подвалах или в каналах под полом первого этажа и по распределительным стоякам движется снизу вверх, поступая в нагревательные приборы.
    Воздух выпускается через краны в верхних пробках нагреватель¬ных приборов на верхнем этаже помещения.
    Однотрубные системы отопления. В этих системах нагревательные приборы обеими подводками подключены к одному и тому же стояку.

    Системы горячего водоснабжения, их назначение и устройство
    Горячее водоснабжение используется для жилых и общественных помещений. Вода при этом должна иметь температуру не менее 60 °С и отвечать требованиям ГОСТа к питьевой воде. Системы горячего водоснабжения могут быть местные и централизованные.

    В местных системах, рассчитанных на одну-две квартиры, вода нагревается вблизи места потребления в газовых водонагревателях, колонках, змеевиках. В централизованных системах вода нагревается в определенном месте (ЦТП, котельная) и затем транспортируется по трубам к многочисленным точкам водорозбора.

    При этом вода нагревается:

    • в водоподогревателях котельных с паровыми или водогрейными котлами;
    • в водоводяных подогревателях ЦТП, с использованием теплоносителя от квартальных (районных) котельных или ТЭЦ (закрытые системы теплоснабжения);
    • от тепловой сети квартальных (районных) котельных или ТЭЦ (закрытые системы теплоснабжения).

    В котельных с паровыми или водогрейными котлами вода для горячего водоснабжения нагревается в емкостных или скоростных водонагревателях. Такие системы горячего водоснабжения могут быть с верхней и нижней разводкой (рис. 96).

    Вода нагревается по следующей схеме: пар из котла поступает в змеевик емкостного водоподогревателя, нагревает воду, которая находится в межтрубном пространстве и конденсируется. Вода подогретая до 60-70 °С под давлением городского водопровода подается в водоразборные краны, а конденсат по конденсатопроводу поступает в котел. Если водоподогреватель находится выше паросборника, конденсат двигается в котел самотеком, а если на уровне или ниже — с помощью насоса.

    Схема принципиально не изменится, если в водоподогреватель будет подаваться не пар, а горячая вода от водогрейного котла. В этом случае охлажденная вода через обратный трубопровод поступает в котел для повторного нагревания.

    Системы горячего водоснабжения разделяются на тупиковую и с циркуляционными стояками.
    На рис. 96, а показана тупиковая схема горячего водоснабжения с нижней разводкой, в которой не предусмотрена возможность цир¬куляции воды при отсутствии водоразбора, в результате чего вода в трубах охлаждается.
    Поэтому такие схемы предусматриваются в основном в малоэтажных жилых домах, а также в столовых, банях, прачечных, где горячая вода используется беспрерывно.

    Если к системам горячего водоснабжения домов любой этажности подключены полотенцесушители, то в таких схемах предусматривается циркуляция воды через специальные циркуляционные стояки (рис. 96, б). При этом даже при длительном отсутствии водоразбора в кранах всегда будет горячая вода, так же — в помещениях высотой более четырех этажей, если в них не установлены полотен- цесушители.

    Схема системы горячего водоснабжения

    Рис. 96. Система горячего водоснабжения с нижней и верхней разводной: а — тупиковая с нижней разводкой; б-с циркулярными стояками и верхней разводкой

  • Метки , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Российский рынок насосного оборудования для добычи нефти

    70% нефти на российских месторождениях добывается с использованием установок электроцентробежных насосов

    Предпочтения в выборе насосного оборудования обусловлены спецификой ос­нащаемого месторождения:

    штанговые глубинные насосы (ШГН) распространены на месторождениях Та­тарстана, Башкортостана, Верхней Волги, которые находятся на поздней стадии про­работки и отличаются высоким удельным весом малодебетных скважин и высоковяз­кой нефтью;

    установки электроцентробежных на­сосов (УЭЦН), как правило, применяются на высокодебитных скважинах, обеспечивая наибольший КПД среди всех механизирован­ных способов добычи нефти.

    Другие виды насосного оборудования эксплуатируются в основном на геологически сложных объектах: установки электровин­товых насосов (УЭВН) — на искривленных скважинах, для добычи высоковязкой не­фти и нефти с содержанием газа; установки электродиафрагменных насосов (УЭДН) — на скважинах с высоким содержанием механических примесей; установки гидро­поршневых насосов (УГПН) — на наклон­ных, высокодебетных, глубоких скважинах; струйные насосы — для высоковязкой не­фти с высоким содержанием механических примесей, для наклонно-направленных скважин.

    Соотношение технологий добычи нефти

    Структура фонда нефтяных добывающих скважин в 2009 году

    Структура фонда нефтяных добывающих скважин в 2009 году

    С их помощью УЭЦН на российс­ких месторождениях извлекается около 70% нефти. В прошлом году на насосное оборудование скважины переоснащали: «ЛУКОЙЛ» (57 скважин), «Роснефть» (236), «Газпромнефть» (98) и «Сургутнефтегаз» (97). Приоритет отдавался УЭЦН, которыми были оснащены 511 фонтанных и газлифтных скважин.

    Штанговые насосы (41% в структуре фонда) традиционно эксплуатируются на низкодебитных скважинах (до 40 т в сутки), суммарная добыча с использованием УШГН около 15%.

    Другие виды насосного оборудования имеют сейчас ограниченное применение.

    Состояние рынка и перспективы

    Рынок УШГН характеризует общая отрицательная динамика. Штанговые насосы замещаются на УЭЦН, что особенно ярко выражено в Западной Сибири.

    Research.Techart обусловливает эту тен-денцию комплексом причин:

    в последние годы не было введено ни одного нового крупного месторождения, ко­торые бы оснащались станками-качалками;

    повышение качества российских УЭЦН, распространение их в сегментах, ко­торые являлись прерогативой использования ШГН (малодебетные скважины);

    малодебитные скважины и сква­жины с высокой обводненностью (целевой сегмент для УШГН) с падением мировых цен ввиду неэффективности выводятся из эксплуатации;

    технологические ограничения: слож­ность монтажа станков-качалок на новых промыслах в удаленных районах, когда соору­жение свайного фундамента дороже самого оборудования;

    высокий период наработки на отказ ШГН (при правильной эксплуатации может прослужить 50 лет), что сокращает потреб­ность в их замене;

    высокая стоимость оборудования, неразвитость сервиса.

    Между тем, в ряде нефтедобывающих регионов (Татарстан и Башкортостан) ШГН не имеют альтернативы, что гарантирует ста­бильный спрос.

    Согласно оценкам Research.Techart, по итогам 2009 г. продажи УЭЦН в нату­ральном выражении увеличились. При этом в стоимостном эквиваленте объем рынка «просел» на ] ,8%, в первую очередь, ввиду сокращения нефтяными компаниями средств на техперевооружение. Одним из следствий стало смещение спроса на более дешевые модели.

    Обращает на себя внимание сущест­венное увеличение численности скважин, оснащенных винтовыми насосными уста­новками как с погружным двигателем, так и с поверхностным приводом. Данная тенденция характерна для новых месторождений с высо­ковязкой нефтью, когда применение УЭЦН нецелесообразно.

    В долгосрочной перспективе следует ожидать некоторого сокращения доли УЭЦН и распространения других насосных техноло­гий. Связывается это с тенденциями развития отрасли — ростом обводненности скважин и снижением пластового давления, а также ожидаемой разработкой шельфовых место­рождений. В подобных условиях применение УЭЦН нецелесообразно.

    Источник: №8/август/2010 г. ТехСовет
  • Метки , , , , , , , , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Фильтры и фильтрующие элементы

    Чем качественнее оборудование, тем бо­лее высокие требования к чистоте входящих потоков. Это естественно: высокая эффектив­ность достигается снижением излишних за­пасов по прочности, точной балансировкой, минимальными зазорами, чистотой и точ­ностью обработки поверхностей. Поэтому солидные поставщики оборудования предлагают его в комплекте с соответствующи­ми фильтрами. Предложение по фильтрам огромно. Это серийно выпускаемые фильтры, подавляющее большинство предназначено для систем водоснабжения, газоснабжения давлением до 1,6 МПа и сжатого воздуха дав­лением до 1,0 МПа. Все прочее многообразие технологических процессов требует индиви­дуального подхода к очистке потоков.

    Что требуется

    От фильтров требуется: заданное качество очистки, низкое гидравлическое сопротивле­ние, прочность корпуса, простота и удобство обслуживания, длительность пробега, при­емлемая стоимость, компактность. Конечно, приходится чем-то жертвовать, потому что одновременно эти пожелания выполнить ни­как невозможно. В некоторых случаях довольно трудно подобрать или разработать фильтр, который по ряду параметров подходит наи­лучшим образом, а по остальным — прием­лем. Вот тогда заинтересованные стороны — проектно-технологическая организация и разработчик фильтров — стараются привести в соответствие свои желания и возможности. В самом благоприятном варианте проектант-технолог направляет подробный опросный лист, разработчик в ответ посылает чертеж фильтра с технической характеристикой. Это и есть выбор оптимального оборудования, процесс исключительно творческий. На его реализацию требуется от 1 часа до несколь­ких месяцев, в зависимости от квалификации сторон и сложности задачи.

    Корпус

    Основных частей у фильтра всего две: кор­пус и фильтрующий элемент. Поскольку кор­пус определяет внешний вид, безопасность и удобство обслуживания — с него и начнем. Cамые крупные фильтры — корпусные. Они имеют корпус в виде вертикальной цилин­дрической обечайки. Для удобства монтажа входной и выходной трубопроводы находят­ся на одной высоте. Если фильтр жидкост­ный — можно открыть нижний дренажный штуцер и слить с фильтрующей корзины на­копившуюся грязь. При необходимости — снять и почистить или заменить фильтрую­щее устройство, открыв крышку корпуса. Это очень популярная модель. Успешно при­меняется для защиты насосов на нефтепро­водах и в системах водоснабжения, работа­ют на Северо-Западной, Калиниградской, Дзержинской и Рязанской ТЭЦ, рис. 1.

    Рис.1

    Следующее большое семейство — фильтры-тройники. Они значительно ком­пактнее своих корпусных собратьев, по­скольку их корпус просто является деталью трубопровода — тройником (рис. 2).

    Рис.2

    Правда, трубопровод может быть и очень солидного диаметра. Тройники большого диаметра и на высокие давления рабочей среды часто заказывают с концами под при­варку для снижения массы и габаритов. Такие фильтры иногда комплектуются быстросъемными затворами, для удобства и скорости из­влечения фильтрующего устройства (рис.3).

    Рис.3

    Попутно заметим, что фильтры-тройники изготавливаются проходными или угловыми, с поворотом потока, как удобнее с точки зрения компоновки на площадке. Если схему течения потока в тройнике выбирает разра­ботчик фильтра, то она будет зависеть от за­данной тонкости фильтрации и допустимого перепада давления. Для небольших диаметров трубопрово­да, менее 300 мм, тройник выполняется Y-образной формы корпуса (рис. 4,5).

    Рис.4, рис.5

    Чемпион по компактности — фильтр с коническим фильтрующим элементом. Его корпус представляет собой отрезок трубо­провода с фланцами, так называемую «ка­тушку». Компактность фильтра объясняется отсутствием люка для фильтрующего эле­мента, рис. б.

    Рис.6

    Для замены или очистки такого фильтра придется разобрать технологический тру­бопровод. Применяется фильтр с таким кор­пусом в качестве временного, на пусковой период, после чего фильтрующий элемент просто демонтируется или как сигнальное устройство на случай неудовлетворительной работы системы штатной фильтрации перед особо дорогими и важными защищаемыми агрегатами, например, турбинами. Для газовых фильтров с целью повышения эффективности, увеличения пробега филь­трующего элемента, использования энергии движущегося потока и разности плотностей разделяемых сред кроме всех вышепере­численных форм корпусов применяют вер­тикальные корпусные фильтры с тангенци­альной подачей газа и выходом очищенного газа вертикально вверх, рис. 7.

    Рис.7

    В таком корпусе снижается нагрузка на фильтрующее устройство, крупные части­цы отделяются, не достигая фильтрующего элемента за счет центробежной силы и силы тяжести. Фильтрующие элементы сепаратора практически не нарастает при эксплуатации. Роторные сепараторы успеш­но защищают компрессоры и турбины на Северо-Западной и Новгородской ТЭЦ, ТЭЦ-21 и ТЭЦ-22 Мосэнерго, АГНКС, установ­ке «Гидрокрекинг». Фильтрующие элементы проектируются на основе данных по тонкости фильтрации, гидравлическому сопротивлению, макси­мально допустимому перепаду давления за­грязненного фильтра. Соответственно, они имеют самую разнообразную форму и ка­чество фильтрующего материала. Это могут быть корзины, патроны, конусы. В газовых фильтрах для больших расходов загрязненного газа применяются вращаю­щиеся фильтрующие элементы — роторы, рис. 8,9.

    Рис.8

    Рис.9

    Фильтр с вращающимся фильтрующим элементом будет называться роторным се­паратором. Ротор очищается за счет цент­робежной силы, которая действует на ча­стицу пыли в слое вращающейся насадки.

    Индивидуальный подход

    Индивидуальный подход к выбору, разработке и изготовлению фильтра оправдывает себя в следующих случаях:

    •     нестандартные условия эксплуатации по температуре, давлению, материалам или веществам;

    •     особые требования по тонкости фильтрации и гидравлическим сопротивлениям;

    •     ограничения по габаритам.

    И, самое главное, поставщик индивидуально разрабатываемого фильтра должен иметь высокую квалификацию и большой опыт.

    Источник: журнал ТПА
  • Метки , , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed

Обратный звонок

Заполните обязательные поля, отмеченные звездочкой!






icq: 645-946-644
  • 04.04.2018
  • Отгрузка уровнемера УСК-ТЭ-100

  • Промышленная группа Империя произвела отгрузку скважинного уровнемера модели УСК-ТЭ-100 (диапазон измерений от 0 до 100 метров) в Нижегородскую область. Уровнемер УСК-ТЭ-100 и другие скважинные уровнемеры в период с 01.03.2018 г. по 09.05.2018 г., предлагаются со скидкой -10% от стандартной стоимости прайс-листа. Успевайте сделать заказ!

  • Подробнее
  • 12.03.2018
  • Воздухосборник проточный А1И: снижение цен

  • Проточный воздухосборник А1И является важным элементом системы отопления, необходимым для удаления воздуха из теплоносителя. Вы можете приобрести воздухосборники проточные серии 5.903-2 и 5.903-20 по выгодной цене от 3350 рублей.

  • Подробнее
  • 05.11.2017
  • Уровнемеры скважинные — успевайте купить!

  • Напоминаем, что 31 декабря 2017 действует Акция «СКИДКА 7% на УРОВНЕМЕРЫ». В период действия акции предоставляется скидка на все виды уровнемеров скважинных тросовых УСК, УСП, ЭУ. Успевайте совершить выгодную покупку.

  • Подробнее

Измерение уровня подземных вод как основа экологического мониторинга

В сфере гидрогеологии для произведения экологического мониторинга прежде всего необходимо измерить уровень подземных вод. Незаменимым помощником в осуществлении этого является скважинный уровнемер. Уровнемер скважинный представляет собой трос необходимой длины с метками, намотанный на катушку.

далее

Установка абонентских грязевиков системы отопления: необходимость или излишество

Абонентский грязевик применяется для очистки теплоносителя от посторонних частиц грязи, ржавчины и прочих примесей. Нельзя недооценивать, важность применения грязевиков в системах отопления. Их значимость доказала свою эффективность в сложных системах, имеющих в составе большое количество регулирующей арматуры.

далее

Уровнемеры скважинные из наличия со склада в Екатеринбурге

Промышленная группа Империя является федеральным поставщиком гидрогеологического оборудования. Основными распространенными видами гидрогеологического оборудования являются:   Уровнемер скважинный тросовый электроконтактный — Уровнемер УСК-ТЭ Уровнемер скважинный тросовый лотовый — Уровнемер УСК-ТЛ Электроуровнемер ЭУ (скважинный) Рулетка гидрогеологическая ленточная металлическая РГЛМ Термометр скважинный электронный ТСЭ   В нашей компании Вы можете купить уровнемеры скважинные, рулетки гидрогеологические из наличия со […]

далее
center