Сделать стартовой |  Добавить в избранное  
Главная Написать письмо Карта сайта
  • Инструкция по монтажу и обслуживанию АСДР «Комплексон-6»

    Техническое описание и инструкция по монтажу, включению в работу, обслуживанию и ремонту АСДР «Комплексон-6» для усредненного расхода подпиточной воды 0,5м3/час системы отопления с расходной емкостью 25л.

    Монтаж

    Расходная емкость с блоком управления и дозирования (БУД) размещается в удобном для обслуживания месте по возможности ближе к расходомерному узлу.

    Расходомерный узел должен монтироваться горизонтально на трубопроводе подпитывающей воды и оборудован байпасной линией для возможности ремонта. Необходимо убедиться, что настройка адаптера на водосчетчике (количество проходящей через водосчетчик воды на один импульс адаптера) соответствует указанной на плате управления. Байпас может быть общим и для других узлов на трубопроводе подпитки (обратный клапан, регулирующий клапан и т.д.). Подпитка должна осуществляться только через расходомерный узел. При этом байпас должен быть закрыт и опломбирован. Наличие параллельных или других незаглушенных трубопроводов для подпитки не допускается.

    Соединение выходного штуцера насоса-дозатора с узлом впрыска осуществляется армированной ПВХ-трубкой с наружным диаметром 12 мм и внутренним диаметром 6,3 мм. Конец трубки, который насаживается на выходной штуцер насоса-дозатора, должен быть срезан под прямым углом и использоваться однократно. Если по каким-либо причинам пришлось снимать трубку с штуцера, то при повторном насаживании использованный кончик трубки должен быть отрезан (при аккуратном снятии допускается повторное использование кончика ПВХ-трубки). Поэтому у расходомерного узла и у БУДа при монтаже трубка должна иметь запас по длине. Сначала конец трубки продевается через прижим с конусным отверстием, при этом конец трубки должен пройти через меньшее отверстие конуса и выйти через широкое отверстие на (3-5)см, затем конец трубки надевают на конусный штуцер насоса-дозатора, придавливают руками прижимом и подтягивают болтами. Насос- дозатор в импульсе развивает высокое давление и обычное крепление ПВХ- трубки может не обеспечить герметичность соединения. Следует следить за тем, чтобы прижим подтягивался равномерно, без перекосов. Обычно АСДР «Комплексон-6» поставляется с закрепленной ПВХ-трубкой на штуцере насоса- дозатора. Далее трубка прокладывается к узлу впрыска, но не надевается на штуцер водосчетчика. Место расположения расходной емкости и прокладки ПВХ-трубки по всей длине не должно подвергаться воздействию отрицательных (в зимнее время) и высоких (свыше 45 0С) температур. Наличие сквозняков через конструктивные отверстия котельной в месте прокладки трубки может вызвать в зимний период образование ледяных пробок в трубке, препятствующих подаче реагентов.

    Соединение адаптера расходомерного узла с БУДом осуществляется гибким двужильным изолированным медным кабелем, но до прокачки насоса-дозатора жилы следует подсоединить только к клеммнику в БУДе, а к адаптеру расходомера не подсоединять.

    Питание 220 В на БУД подается с ближайшего щитка через автомат с током срабатывания 2А или через розетку. Корпус установки должен быть заземлен.

     

    Заправка и проверка работоспособности

    Открыть загрузочное отверстие в расходной емкости. При использовании цинкового комплекса ОЭДФ (ОЭДФ-Ц) его следует разводить в соотношении 1 к 3. При использовании цинкового комплекса НТФ (НТФ- Ц) его следует разводить в соотношении 1 к 2. Растворять реагенты лучше в отдельной пластиковой посуде частями и заливать в расходную емкость. ОЭДФ-Ц и НТФ-Ц тяжелее воды (1л = 1, 15-1.2кг), поэтому необходимо хорошо перемешивать раствор, чтобы реагент не остался на дне емкости. Уровень раствора в расходной емкости должен быть ниже верхнего края емкости не менее, чем на 5см (контролируется визуально через загрузочное отверстие). Следует иметь ввиду, что ОЭДФ-Ц и НТФ-Ц являются рН-нейтральными реагентами и их нельзя смешивать с реагентами в кислой форме (например, с ОЭДФ, НТФ).

    Счетчик ОСВ (СКБ) дает один импульс адаптера (замкнуто-разомкнуто) в зависимости от типа адаптера после прохождения каждых 5 литров воды (Уимп=5л) либо 10 литров (Уимп=10л), Настройка адаптера указывается на водосчетчике.

    Подать питание 220 В на БУД. Убедиться, что горит светодиод «контроль» и не светится красный светодиод «реагент» (при включенном светодиоде «реагент» блокируется работа насоса-дозатора). Для проверки работоспособности установки замкнуть и разомкнуть жилы кабеля к адаптеру водосчетчика. Должен соответственно мигать зеленый светодиод «счет», включиться насос-дозатор (светодиод «впрыск») и, отработав заданное при настройке на объект количество доз, выключиться.

    Нажатием кнопки «прокачка» платы управления включить насос-дозатор принудительно до тех пор, пока в ПВХ-трубке, надетой на выпускной штуцер насоса- дозатора, не появится раствор реагента (трубка должна быть без давления, т.е. иметь открытый выход в атмосферу). Прокачивать насос-дозатор до тех пор, пока раствор реагента не приблизится к выходному концу ПВХ-трубки, надеваемой на штуцер водосчетчика. Примечание: если заполнения не происходит (небольшая грязь в клапанах), надо «помочь» насосу-дозатору, создавая во время его работы разрежение в ПВХ-трубке. Это нужно делать, пока из выходного штуцера насоса-дозатора не появится раствор реагентов. После этого «подсос» не требуется, а небольшая грязь в клапанах автоматически промывается.

    Аккуратно надеть ПВХ-трубку на штуцер узла впрыска водосчетчика и закрепить прижимом, аналогично креплению трубки на штуцере насоса-дозатора. Присоединить жилы кабеля к адаптеру и закрепить сам кабель на адаптере. (Жилы кабеля присоединяются на клеммнике БУДа и адаптере произвольно, без «фазировки»).

     

    Обслуживание и контроль за работой АСДР «Комплексон-6»

    АСДР «Комплексон-6» работает в автоматическом режиме и обязанности персонала котельной сводятся к периодическому контролю отсутствия подтеканий реагента в расходной емкости, узле впрыска и соединительной трубке, записи в журнале учета работы АСДР «Комплексон-6» показаний водосчетчика, индикатора уровня, все случаи подпитки помимо водосчетчика и другие нештатные ситуации, а также о произведенных «сдувках».

    Зеленый светодиод «контроль» должен светиться. Зеленый светодиод «счет», фиксирующий импульсы о расходе подпитывающей воды от адаптера водосчетчика, при наличии расхода воды (вращается «ромашка» водосчетчика) должен «мигать». Светодиод делает один полный импульс (включено-выключено) при прохождении через водосчетчик количества воды, соответствующего настройке адаптера. При небольших расходах воды светодиод «счет» может включаться и выключаться через большие промежутки времени.

    Зеленый светодиод «впрыск» светится во время работы насоса-дозатора. Красный светодиод «реагент» сигнализирует о снижении уровня раствора реагентов в расходной емкости ниже допустимого и блокирует работу насоса-дозатора.

    Персонал котельной осуществляет контроль за фактическим введением реагентов в подпиточную воду по показаниям водосчетчика, учитывающего объем воды, прошедшей на подпитку за фиксированный период времени, и по показаниям индикатора уровня реагентов, характеризующим расходование раствора реагентов за этот же промежуток времени.

    По окончании отопительного сезона или раз в году из котлов с пониженной скоростью циркуляции сетевой воды (жаротрубные и т.п.) необходимо удалять отстои взвесей и продуктов коррозии. Не допускается закипание или перегрев воды в трубках котлов выше 1150С (с учетом неравномерности тепловой нагрузки на трубки котлов) и выключение системы дозирования во время работы котельной.

    Все узлы системы и соединительная трубка не должны подвергаться воздействию отрицательных температур.

     

    Дополнительная информация по автоматической системе дозирования реагентов по следующим ссылкам:

     

     

  • Метки , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Как защитить трубопровод от коррозии. Системы водоподготовки.

    Сегодня более 50% труб, применяемых в жилищно — коммунальном хозяйстве России, стальные, поэтому защита их от коррозии имеет первостепенное значение для обеспечения оптимальных эксплуатационных характеристик трубопроводов. Феномен коррозии может быть обусловлен недостаточно сбалансированным составом протекающей по трубам жидкости, некорректным сочетанием различных металлов или, наконец, недостаточным вниманием к защите трубопровода.

    Свойства воды

    Вода, протекающая по трубопроводу, может иметь агрессивные свойства. Зачастую это обусловлено обработкой такой волы хлором или процессами коагуляции и флокуляции, происходящими в воде непосредственно на станции водоподготовки. Агрессивность может быть обусловлена содержанием вводе кислорода, хлора, карбонатов и бикарбонатов. Она уменьшается при возрастании уровня кислотности и жесткости и возрастает при повышении температуры и содержании растворенных воздуха и углекислого газа.

    Основная цель химической обработки воды (рис. 1) — преобразовать потенциально агрессивную иоду в слабокальцирующую. Умеренная жесткость, на самом деле, желательна, поскольку способствует образованию па внутренней поверхности трубы отложений солей кальция, которые и защищают металл. Добавлением в воду соответствующих ингибируюших веществ можно затормозить процесс коррозии, редуцируя се до менее опасных проявлений (равномерная коррозия вместо глубокой локальной), а также способствовать (при помощи химической реакции) образованию известковых отложений, которые плотно прилипая к металлу, образуют покрытие защищающее его от коррозийного воздействия.

    Рис.1. Химическая обработка агрессивной воды

    Рис. 1. Химическая обработка агрессивной воды

    В водопроводных сетях общего пользования обработка воды сводится, главным образом, к добавлению кальция — Са(ОН)2,  соды — NaOH или карбоната натрия — Na2CO3. На участках водопровода, обеспечивающих распределение воды но отдельным точкам водозабора, эффективным способом антикоррозийной защиты считается обработка воды особыми «секвеструющими» добавкам и (главным образом, полифосфатами). Основанная задача добавок такого рола — корректирование чрезмерной жесткости воды, которая в противном случае может привести к образованию нежелательных очагов известковых отложений (комплексонатная подготовка). В стальных оцинкованных трубопроводах при добавлении в воду полифосфатов, фосфатов или силикатов на внутренней поверхности трубопровода образуется пленка полифосфата, фосфата или силиката цинка или железа, защищающая металл от коррозии. Применять такие реагенты в водопроводных сетях питьевого назначения разрешено при условии соблюдения требований, установлен н ых действующими регламентами СанПиН.

    Для защиты заглубленных стальных трубопроводов анод размещается на расстоянии >= 3 м от трубы и подключается к ней посредством медного изолированного кабеля сечением >= 10 мм2, приваренного на обоих концах.

    Защитные покрытия

    Покрытия наносятся как па внутренние, так и на внешние поверхности трубопровода, где они образуют защиту трубопровода, которая бывает активного или пассивного типа. В некоторых случаях могут сочетаться оба типа защиты. В случае активной зашиты покрытие создает условия, препятствующие распространению коррозии металла. Поверхность стальных груб покрывается более или менее плотным слоем электрохимически менее благородного металла (обычно цинка), который, защищая основной металл, берет на себя воздействие коррозии. Активная защита в большей степени защищает внутреннюю поверхность трубы от коррозийного воздействия протекающей жидкости. С внешней стороны такая защита образует базовое покрытие, усиленное пассивной защитой.
    Задача пассивной зашиты — предохранить металлические трубы от разрушающего воздействия окружающей среды. Па заглубленных участках водопроводов очень важно бывает надежно защитить металл от непосредственного контакта с грунтом. Аналогичная зашита используется для достижения (при помощи внутреннего покрытия) в трубопроводах, предназначенных для доставки воды особо агрессивного типа. Нанесение защитных слоев, выполняемых из лаков, красок или эмалей, создает непрерывный непроницаемый барьер, который защищает находящийся под ним металл от коррозийного воздействия среды.

    Для этой пели чаще всего используются битумные продукты, получаемые от перегонки угля или нефти или из синтетических смол, термопластичных (полиэтилен, полипропилен, полиамиды) и термоотверждающихся (эпоксидные, иолиуретановые. сложные полиэфиры).

    Для внешней защиты трубопроводов открытого заложения можно прибегнуть к лакокрасочным покрытиям или порошковым пластическим материалам. Нанесение покрытия осуществляется различными способами в зависимости от материала трубопровода. Жидкие составы наносятся кисточкой, погружением в раствор или опрыскиванием из пистолета.

    Порошковые вещества (преимущественно пластические материалы) наносятся на трубу, предварительно разогретую до температуры, превышающей температуру плавления порошка. Порошок наносится па поверхность трубы электростатическим способом или воздушным напылением. Термопластичные материалы могут наноситься также методом экструзии. Нанесение поверхностных слоев из металла (например, цинка) производится посредством погружения трубы в расплавленный металл или при помощи электролитического осаждения. Еше один метод, часто используемый для покрытия заглубленных в грунт трубопроводов, заключается в равномерном нанесении на предварительно очищенную трубу сплошной пленки из защитного материала, имеющего хорошие прилипающие свойства. и последующем нанесении защитного слоя из битумной смеси и двух слоев стекловаты (или ткани), пропитанных битумной смесью, для придания устойчивости к внешним воздействиям. Лучше, если защитная обработка нарезанных труб будет проведена на заводе-изготовителе.

    Рис.2. Защита с использованием "расходуемого анода"

    Рис. 2. Защита с использованием «расходуемого анода»

    Заглубленный трубопровод подвержен коррозии вследствие агрессивности почвы. В зависимости от свойств почвы (точнее, параметров се сопротивления) и металла, из которого изготовлен трубопровод, образуются коррозийные батареи. Металл, выполняющий функцию анода относительно почвы, выступающей в этом случае катодом, стремится к разложению и переходу в раствор.
    Один из вилов защитных мероприятий — это пассивная защита. Для прокладки трубопровода используются грубы с защитным влагонепроницаемым покрытием с изолирующими соединительными муфтами. В этом случае электрическая протяженности трубопровода нарушается, тормозится обмен электрическим током между трубами и почвой. Следует признать, что такой подход не всегда дает стопроцентный результат, поскольку в местах, где защитное покрытие труб нарушено в процессе укладки трубопровода, возможно образование очагов коррозии. С коррозией можно бороться метолом «катодной защиты»: если искусственно понизить потенциал металла, подавляется анодная реакция. Для этого необходимо осуществить электрическое подключение трубопровода к сети, имеющей в своем составе анод. Так называемый «расходуемый анод» (рис. 2) выполняется из металла, имеющего большую электроотрицательность, т. е. менее благородного, чем железо. Как правило. в этих целях используется магниевый сплав. При таком подключении коррозия локализуется на магнии, который медленно разлагается сам и защищает трубопровод. В случае практического применения данной технологии следует прежде всего замерить степень агрессивности почвы.
    Затем на участках, где необходимо организовать защиту трубопровода, в расчетных точках вкапывается некоторое количество расходуемых анодов. Вес и число анодов определяются с таким расчетом, чтобы обеспечить антикоррозийную защиту трубопровода на период 10—15 лет.

    Рис.3. Катодная защита "индуцированным током"

    Рис.3. Катодная защита «индуцированным током»

    Еще один способ, предохраняющий металл от агрессивности почвы, — это защита «индуцированным током» (рис. 3). Для этого используется внешний источник постоянного тока, который идет от питающего устройства, состоящего из трансформа гора и выпрямителя. Положительный полюс питающего устройства подключен к анодному рассеивателю (заземление, состоящее из графитового или железосодержащего анода), отрицательный — к трубопроводу, представляющему объект защиты.

    Передаваемый защитный ток определяется параметрами трубопровода (длина, диаметр, имеющаяся степень изоляции) и степенью агрессивности почвы. Ток, рассеиваемый заземлением, создаст электрическое поле, обволакивающее трубу и понижающее его потенциал, что и дает защитный эффект. Надежность и эффективность катодной зашипл обеспечиваются, в т. ч.. периодическим осмотром сети, проверкой работоспособности используемого оборудования и своевременным устранением неисправностей.

    Источник: Журнал «ТехСовет» №7/июль/2011г.

    В качестве защиты трубопровода от коррозии с применением комплексонных технологий предлагаем ознакомиться с информацией об Автоматической системе дозирования реагентов АСДР «Комплексон-6». Подробнее…

  • Метки , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Комплексоны что это такое. Применение комплексонных технологий

    risunok1Комплексоны — это органические вещества (например, оксиэтилидендифосфоновая кислота, нитрилотриметилфосфоновая кислота и другие), которые образуют комплексные соединения (комплексы) с ионами металлов (на рисунке показано пространственное строение комплекса нитрилотриметилфосфоновой кислоты с кальцием в водной среде).Комплексы с ионами кальция, магния и других металлов безвредны для человека и других живых существ и растворимы в воде. Они способны адсорбироваться на поверхности зародышей кристаллизации солей жёсткости, блокируя центры роста кристаллов (рисунок). Таким образом, комплексоны препятствуют кристаллизации солей жёсткости и образованию осадков в виде накипи и шлама.risunok2 Комплексоны способны физико-химически адсорбироваться на поверхности металла с образованием поверхностных адсорбционных комплексов, а также физически сорбироваться, встраиваясь в двойной электрический слой. Это приводит к снижению скорости коррозии металла. Малые количества комплексонов постепенно разрушают застарелые отложения накипи и продуктов коррозии. Это объясняется не химическими процессами комплексообразования, а перестройкой кристаллической решётки карбоната кальция из тригональной (кальцит) в ромбическую (арагонит), а также эффектом Ребиндера — расклинивающим действием молекул, адсорбированных в микро- и мезопорах отложений. Вследствие этих процессов отложения накипи и продуктов коррозии в присутствии комплексонов постепенно разрушаются и переходят в коллоидный раствор или взвесь, легко удаляемую циркулирующей водой. Комплексонные технологии применяют в теплотехнических системах (паровых и водогрейных котлах, бойлерах, тепловых сетях и системах горячего водоснабжения, циркуляционных системах охлаждения с радиаторами и градирнями) в различных отраслях: в энергетике, жилищно-коммунальном хозяйстве (в системах отопления и горячего водоснабжения коллективных и индивидуальных жилых домов), на транспорте, в промышленности. Они позволяют:

    1. — Исключить возможность образования накипи на поверхностях теплопередачи и отложений в трубопроводах;
    2. — Предотвратить или значительно замедлить коррозию металлических частей теплотехнического оборудования;
    3. — Постепенно, не нарушая режима работы оборудования, удалить имеющуюся накипь и продукты коррозии.
    Труба ГВС с отложениями накипи до (слева) и после (справа) обработки воды комплексонами

    Труба ГВС с отложениями накипи до (слева) и после (справа) обработки воды комплексонами

    Все эти задачи решаются путём введения в воду, используемую для питания теплотехнических систем, небольших количеств (1 … 10 г/м3) специальных веществ — комплексонов. Для обработки воды в теплотехнических системах различных типов применяются различные комплексонные препараты. Комплексонные препараты, разрешённые Госкомсанэпиднадзором России для обработки питьевой воды, с успехом применяются в системах горячего водоснабжения. Для комплексонной обработки воды на трубопроводе подпитки теплотехнической системы устанавливают дозирующее устройство, которое автоматически подаёт раствор комплексона в количестве, пропорциональном количеству проходящей подпиточной воды. Существуют различные типы дозирующих устройств, принцип действия которых основан на использовании механических насосов или эжекторов. Наиболее простыми, удобными в эксплуатации, надёжными и долговечными являются дозирующие устройства Комплексон-6.

    По сравнению с другими технологиями водоподготовки (умягчением воды на сульфоугольных или катионитовых фильтрах, испарительным опреснением воды, подкислением или фосфатированием) обработка воды комплексонами имеет целый ряд преимуществ:

    1. — Возможность очистки водогрейных и паровых котлов, бойлеров, систем горячего водоснабжения и циркуляционных систем охлаждения от застарелых отложений накипи и продуктов коррозии, а также при кратковременных нарушениях водно-химического режима «на ходу», без вывода оборудования из эксплуатации;
    2. — Постоянное поддержание в чистоте поверхностей теплопередачи и трубопроводов, что позволяет повысить эффективность работы теплотехнического оборудования, снизить расход топлива и затраты энергии на подачу воды по трубопроводам;
    3. — Полная совместимость и возможность одновременного применения с традиционными водоумягчительными фильтрами и физическими методами противонакипной обработки воды (магнитной или ультразвуковой), при этом эффективность борьбы с накипеобразованием и коррозией повышается;
    4. — Наименьшие по сравнению с другими методами противонакипной и противокоррозионной обработки воды затраты материалов, энергии и труда на обслуживание системы водоподготовки (в частности, исключение всех затрат на подогрев воды, поваренную соль, промывочную воду и сбросы сточных вод);
    5. — Отсутствие сточных вод, что позволяет снизить отрицательное воздействие на окружающую среду;
    6. — Компактность оборудования и расходных материалов: запас реагентов на отопительный сезон для средней котельной составляет несколько десятков или сотен килограммов и не требует устройства специальных складов или громоздкого и дорогостоящего реагентного (солевого) хозяйства.

    Источник: РосТепло.РУ

  • Метки , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed

Обратный звонок

Заполните обязательные поля, отмеченные звездочкой!





Нажимая на кнопку Отправить, Вы даете согласие на обработку персональных данных и принимаете условия «Пользовательского соглашения», в том числе п.3 «Политика конфиденциальности».

icq: 645-946-644
  • 27.03.2020
  • Изменение режима работы в период с 28.03.2020 по 05.04.2020г.

  • В целях соблюдения указа Президента РФ об объявлении не рабочей недели в период с 28 марта 2020г. по 5 апреля в связи с ситуацией по распространению новой коронавирусной инфекции COVID-19, сообщаем, что вынуждены перейти на удаленную работу.

  • Подробнее
  • 04.04.2018
  • Отгрузка уровнемера УСК-ТЭ-100

  • Промышленная группа Империя произвела отгрузку скважинного уровнемера модели УСК-ТЭ-100 (диапазон измерений от 0 до 100 метров) в Нижегородскую область. Уровнемер УСК-ТЭ-100 и другие скважинные уровнемеры в период с 01.03.2018 г. по 09.05.2018 г., предлагаются со скидкой -10% от стандартной стоимости прайс-листа. Успевайте сделать заказ!

  • Подробнее
  • 12.03.2018
  • Воздухосборник проточный А1И: снижение цен

  • Проточный воздухосборник А1И является важным элементом системы отопления, необходимым для удаления воздуха из теплоносителя. Вы можете приобрести воздухосборники проточные серии 5.903-2 и 5.903-20 по выгодной цене от 3350 рублей.

  • Подробнее

Измерение уровня подземных вод как основа экологического мониторинга

В сфере гидрогеологии для произведения экологического мониторинга прежде всего необходимо измерить уровень подземных вод. Незаменимым помощником в осуществлении этого является скважинный уровнемер. Уровнемер скважинный представляет собой трос необходимой длины с метками, намотанный на катушку.

далее

Установка абонентских грязевиков системы отопления: необходимость или излишество

Абонентский грязевик применяется для очистки теплоносителя от посторонних частиц грязи, ржавчины и прочих примесей. Нельзя недооценивать, важность применения грязевиков в системах отопления. Их значимость доказала свою эффективность в сложных системах, имеющих в составе большое количество регулирующей арматуры.

далее

Уровнемеры скважинные из наличия со склада в Екатеринбурге

Прмышленная группа «Империя» является поставщиком гидрогеологического оборудования: уровнемеры скважинные, рулетки гидрогеологические, термометры. Продукция реализуется из наличия со склада в Екатеринбурге. Вы также можете заказать изготовление партии в срок от 7 до 15 дней (срок зависит от количества).

далее
center