Сделать стартовой |  Добавить в избранное  
Главная Написать письмо Карта сайта
  • Рекомендации по выбору пластинчатых теплообменников

    Конструктивные особенности пластинчатого теплообменника таковы, что при эксплуатации не должно возникать утечек. В случае появления утечек это может означать, что вы остановили свой выбор на теплообменнике плохой конструкции. Для правильного выбора пластинчатых теплообменников необходимо обращать внимание на следующие показатели.
    1. Важно, чтобы рама теплообменника была замкнутой и длинной. Это облегчит и упростит осмотр внутренних поверхностей пластинчатого теплообменника и их обслуживание.
    2. Так как теплообменники работают при широком диапазоне рабочих давлений до 25 бар, то и рамы должны иметь разную массу и прочность (эти показатели рассчитываются в зависимости от рабочего давления)
    3. Обратите внимание на простоту разборки больших теплообменников. Гайки должны быть оснащены упорными подшипниками, чтобы не прикипать при долгой работе подогревателя, и легко откручиваться.
    4. Прокладки могут крепиться на пластинах двумя основными способами – клеевым или механическим. Механическое крепление предпочтительнее, благодаря ряду преимуществ. При помощи такого способа возможно зафиксировать прокладку в желобках пластин максимально прочно и точно. Простота и дешевизна механического крепления, по сравнению с клеевым, также является его неоспоримым достоинством. Клеевое крепление требует материальных затрат на замену клея при ремонте или смене клеевых прокладок.
    5. Огромное значение имеет плотность пакета пластин. Необходимо, чтобы прокладки были закреплены в желобках пластин настолько прочно, чтобы выдержать избыточное давление.
    6. Уточните, возможно ли применение прокладок разных типов резины, так как для температуры ниже 90 оС рекомендуется применять прокладки из нитриловой резины (это позволит сэкономить на стоимости теплообменника), а при температуре до 150 оС — прокладки из EPDM (более высокой стоимости).
    7. Резина прокладок должна быть устойчивой к агрессивным химическим веществам, которые могут быть применены при химической очистке пластинчатых теплообменников.
    8. Обратите внимание на марку стали, из которой изготовлен теплообменник. Необходимо, чтобы сталь была коррозиеустойчива, а в случае эксплуатации теплообменника в системах горячего теплоснабжения, сталь должна быть стойкой к воздействию свободных ионов хлора.
    9. Чтобы не загрязнять горячую воду окислами железа, возникающими при соприкосновении теплоносителей со стяжными плитами теплообменника из углеродистой стали важно, чтобы была возможность покрыть «порты» теплообменника нержавеющей сталью.
    10. Приоритетнее выбирать теплообменники без приварных швов. Это упрощает и облегчает их конструкцию, а также уменьшает возможность возникновения утечек через сварные швы.
    11. Пластины должны быть оборудованы распределительным участком для распределения потока жидкости так, чтобы не оставалось зон с пониженной скоростью не участвующих в процессе теплообмена. Благодаря этому, достигается максимальная эффективность использования поверхности теплообмена и сводится к минимуму возможность выпадения взвесей в осадок.

  • Метки , , , , , , , , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Особенности конструкции пластинчатых теплообменников

    Пластинчатые теплообменники представляют собой аппараты, поверхность теплообмена которых образована из тонких штампованных пластин с гофрированной поверхностью.

    Рабочие среды в теплообменнике движутся в щелевых каналах между соседними пластинами. Каналы для греющего и нагреваемого теплоносителей чередуются между собой. Простейший теплообменник состоит не менее, чем из трех пластин, которые образуют два канала: один для греющего теплоносителя, второй для нагреваемого. Гофрированная поверхность пластин усиливает турбулизацию потоков рабочих сред и повышает коэффициенты теплоотдачи. Размеры, формы и профили поверхности пластин разнообразны.
    Из теплопередающих пластин, основного сборочного элемента теплообменника, собирают пакет. При этом каждая последующая пластина повернута на 180° относительно смежных, что создает равномерную сетку пересечения и взаимных точек опор вершин гофр. Между каждой парой соседних пластин образуется щелевой канал сложной формы, по которым и протекает рабочая среда. Жидкость при движении в них совершает пространственное трехмерное извилистое движение, при котором происходит турбулизация потока. Угловые отверстия для прохода рабочей среды имеют форму, обеспечивающую снижение гидравлических сопротивлений на входе в канал и выходе из него, снижение отложений на этих участках и позволяющую более рационально использовать всю площадь пластины для теплообмена.
    Рама аппарата, на которой устанавливаются пластины, образуется опорной плитой, верхней и нижней штангами, закрепленными в опорной плите и поддерживаемыми стойкой.

  • Метки , , , , ,
    Опубликовано в: Это нужно знать | Comments Closed
  • Пластинчатый теплообменник

    Пластинчатый теплообменникТеплообменник пластиинчатый — устройство, в котором осуществляется передача тепла от горячего теплоносителя к холодной (нагреваемой) среде через медные, стальные, графитовые гофрированные пластины, которые стянуты в пакет. Горячие и холодные слои перемежаются друг с другом.

    Основным элементом пластинчатого теплообменника являются теплопередающие пластины, произведенные из коррозионно – стойких сталей толщиной 0,5 – 0,6 мм, методом холодной штамповки.

    В процессе теплообмена жидкости движутся навстречу друг другу (в противотоке). В местах их возможного перетекания находится либо стальная пластина, либо двойное резиновое уплотнение, что практически исключает смешение жидкостей.

    Основные размеры и параметры наиболее распространенных в промышленности пластинчатых теплообменников определены ГОСТ 15518—83. Их изготовляют с поверхностью теплообмена от 2 до 600 м2 в зависимости от типоразмера пластин; эти теплообменники используют при давлении до 1,6 МПа и температуре рабочих сред от —30 до +180° С для реализации теплообмена между жидкостями и парами (газами) в качестве холодильников, подогревателей и конденсаторов.

    По степени доступности поверхности теплообмена для механической очистки и осмотра пластинчатые теплообменники делятся на разборные, полуразборные (полусварные), неразборные (паяные и сварные).

    Разборные пластинчатые теплообменники системы TL

    Тип теплообменника

    Давление рабочее, атм.

    Давление испытательное, атм.

    Температура max, °C

    Расход max, м3/час

    Мощность, кВт

    TL50

    16

    20,8

    150

    25

    10-900

    TL90

    16

    20,8

    150

    30

    150-1500

    TL150

    16

    20,8

    150

    35

    300-1600

    TL250

    16

    20,8

    150

    165

    500-8000

    TL500

    16

    20,8

    150

    370

    500-12000

    TL650

    16

    20,8

    150

    450

    1000-21000

    TL850

    16

    20,8

    150

    700

    1500-28000

    Полуразборные (полусварные) пластинчатые теплообменники TL

    Тип теплообменника

    Давление рабочее, атм.

    Давление испытательное, атм.

    Температура max, °C

    Расход max, м3/час

    Мощность, кВт

    TL90

    16

    20,8

    150

    30

    150-1500

    TL150

    16

    20,8

    150

    35

    300-1600

    TL250

    16

    20,8

    150

    165

    200-8000

    TL400

    16

    20,8

    150

    100

    200-6000

    TL500

    16

    20,8

    150

    370

    500-12000

    TL650

    16

    20,8

    150

    450

    1000-21000

    TL850

    16

    20,8

    150

    700

    1500-28000

    Паяные пластинчатые теплообменники

    Типоразмер

    Давление рабочее, атм.

    Давление испытательное, атм.

    Диапазон рабочей температуры

    max, °C

    Разница температур (сторона1/сторона2)

    max, °C

    Расход,

    max,

    м3/час

    Мощность, кВт

    V200

    27

    31

    225

    B25TH/1P

    31

    50

    225

    100

    12

    250

    M12

    23

    30

    -50…200

    100

    3

    5-150

    M18

    30

    39

    -50…200

    100

    5

    10-250

    H/M/L.25

    30

    39

    -50…200

    100

    15

    50-600

    H/M/L.55

    30

    39

    -50…200

    100

    30

    300-1200

    M100

    30

    39

    -50…200

    100

    85

    500-3000




    Разборные пластинчатые теплообменники системы TL

    Разборный пластинчатый теплообменник VT

    Полуразборные (полусварные) пластинчатые теплообменники TL

    Паяные пластинчатые теплообменники

    Разборные теплообменники пластинчатые Tranter (Трантер)

    Спиральные теплообменники Tranter (Трантер)

    Сварные теплообменники SUPERMAX® и MAXCHANGER®


    Подбор пластинчатого теплообменника осуществляется по опросному листу:

    Опросный лист для заказа теплообменника

    Опросный лист для заказа пластинчатого теплообменника для хладоснабжения

    Опросный лист для заказа пластинчатого теплообменника на технологические процессы




  • Метки , , , , , , , , , , , , , , , , ,
    Опубликовано в: Теплообменное оборудование и подогреватели | Comments Closed
  • Легенды и мифы современной теплотехники или пластинчатые и кожухотрубные теплообменные аппараты

    Легенды и мифы современной теплотехники
    или пластинчатые и кожухотрубные теплообменные аппараты
    к.т.н Барон В.Г., директор ООО «Теплообмен», г.Севастополь

    В настоящей статье предпринята очередная попытка осуществить объективное, без передергиваний и эмоциональной окраски, сравнение двух наиболее известных типов теплообменных аппаратов – пластинчатых и кожухотрубных. За последнее десятилетие благодаря массированной, причем зачастую необективной, рекламе пластинчатых аппаратов, в среде сотрудников, работающих в сфере теплотехники, в т.ч. коммунальной, сформировалось ложное мнение об абсолютном превосходстве пластинчатых теплообменников над кожухотрубными. Впрочем этому не стоит удивляться, т.к. рекламная кампания пластинчатых аппаратов осуществлялась по всем правилам воздействия – она была обширнейшей, постоянной и либо бездоказательной, на уровне заклинаний (например, встречались статьи с названием «Пластинчатые теплообменники – альтернативы нет»), либо псевдодоказательной, рассчитанной в этом случае на недостаток узкоспециальных знаний у специалистов-теплотехников широкого профиля. Настоящим предпринимается попытка восполнить пробел в доказательном ряду сравнений пластинчатых и кожухотрубных теплообменников.

    Перечисляя преимущества пластинчатых аппаратов, их апологеты, как правило, выделяют следующие преимущества: небольшой вес, небольшой габаритный объем, тонкостенность теплопередающих пластин и высокий коэффициент теплопередачи, повышенный срок службы, легкость технического обслуживания. О цене предпочитают умалчивать, т.к. она, как правило, в несколько раз превышает цену кожухотрубных аппаратов (здесь и далее речь идет о разборных пластинчатых теплообменниках, т.к. неразборные в условиях СНГ, как правило, предпочитают не применять и, кроме того, они, имея меньшую стоимость, одновременно теряют ряд преимуществ разборных аппаратов – прим. авт.). Итак,

    легенда №1 – небольшой вес

    Тезис о незначительном весе пластинчатых теплообменников сформировался в начале 90-х годов прошлого столетия, когда западноевропейские фирмы, придя на рынок стран СНГ, в массовом порядке столкнулись с кожухотрубными аппаратами, использовавшимися в коммунальном хозяйстве Советского Союза и разработанными более полувека тому назад. Грешно было не использовать такой козырь. Но продолжать эксплуатировать эту легенду в настоящее время представляется просто непорядочным (ведь нельзя всерьез предположить, что абсолютно все представители фирм-поставщиков пластинчатых теплообменников совершенно не следят за событиями, происходящими на соответствующем сегменте научно-технического рынка). А в настоящее время на рынке есть кожухотрубные теплообменники фирмы САТЭКС [1], сравнение с которыми по весу уже не дает столь ошеломляющих преимуществ пластинчатым аппаратам, есть также теплообменники, разработанные ЦКТИ [2, 3], по сравнению с которыми выигрыш по массе у пластинчатых аппаратов становится еще более скромным, и, наконец, есть аппараты ТТАИ предприятия «Теплообмен» [4, 5], сравнивать с которыми пластинчатые аппараты по массе никогда не возьмется ни один представитель фирм-поставщиков пластинчатых теплообменников, т.к. вес пластинчатых аппаратов будет выглядеть просто пугающе большим.

    Для примера приведем конкретные данные по одному из объектов, для комплектации которого были даны предложения по западноевропейским пластинчатым теплообменникам и аппаратам ТТАИ предприятия «Теплообмен».

    Для нагрева воды в бассейне требовался теплообменник. Заказчик, выбирая наиболее устаивающий его вариант, выдал исходные данные различным поставщикам (в обоих случаях предусматривалось титановое исполнение): требуется нагревать морскую воду с расходом 9,4 т/ч от 4 оС до 27 оС пресной водой с расходом 10,8 т/ч и температурой на входе в теплообменник 70 оС. Предложенный для решения этой задачи пластинчатый теплообменник имел сухой вес, равный 120 кг, а теплообменник ТТАИ имел вес, равный 5 кг. Комментарии, наверное, излишни.

    Таким образом становится очевидным, что малый вес пластинчатых аппаратов по сравнению с кожухотрубными не более, чем легенда.

    Легенда №2 – небольшой габаритный объем

    Рекламируя преимущества пластинчатых теплообменников, почти всегда подчеркивают такое их достоинство, как небольшой габаритный объем, что позволяет радикальным образом экономить площади, необходимые для размещения теплообменного оборудования и высвобождать их для использования по другому назначению. Для крупных городов, где каждый квадратный метр офисной или торговой площади в центре города стоит немалых денег, это действительно важное качество. Но всегда ли слово «пластинчатый» обеспечивает преимущество по этому показателю по сравнению со словом «кожухотрубный»? Или честнее было бы писать «современный пластинчатый по сравнению с устаревшим, без малого вековой давности разработки, кожухотрубным». Представляется, что последняя формулировка была бы намного точнее. Впрочем, читатель может судить сам на основании нижеприведенных данных.

    Требуется осуществить 2-х ступенчатый нагрев воды горячего водоснабжения, при этом расход нагреваемой воды 8,4 т/ч, температуры нагреваемой воды (последовательно по ступеням) – 5 оС, 43 оС и 55 оС. По греющей среде были заданы следующие параметры: расход через 2-ю и 1-ю ступени соответственно 5,6 т/ч и 15,2 т/ч, температуры греющей среды на входе во 2-ю и 1-ю ступени соответственно – 70 оС и 52 оС.

    Для решения стоящей задачи был предложен пластинчатый теплообменник одной из западноевропейских фирм, имеющий габаритный объем, равный 0,19 м3. Решение этой же задачи (при тех же потерях напора) с помощью теплообменников ТТАИ потребовало применения для 1-й ступени аппарата с габаритным объемом 0,03 м3, а для 2-й – 0,007 м3. Как видно, суммарный габаритный объем двух аппаратов ТТАИ в 5,1 раза меньше габаритного объема одного пластинчатого аппарата. Следует обратить внимание на то обстоятельство, что в данном случае осуществлено заведомо невыигрышное сравнение для аппаратов ТТАИ, т.к. 2-х ступенчатый нагрев конструктивно может быть выполнен в одном пластинчатом аппарате, но на данный момент требует двух аппаратов ТТАИ (сейчас разрабатывается модификация, позволяющая выполнять 2-х ступенчатый нагрев в одном корпусе теплообменника ТТАИ). В тех случаях, где не требуется 2-х ступенчатого нагрева, выигрыш по габаритному объему в случае применения кожухотрубных теплообменников ТТАИ достигает 10 и более раз. И при этом надо еще учесть, что аппараты типа ТТАИ зачастую удобнее компонуются в помещении, что также создает выигрыш по производственным площадям.

    Совсем недавно удалось выделить дополнительно 63 м2 торговых площадей в одном из крупнейших торговых центров Киева только благодаря переходу к теплообменникам ТТАИ от предварительно предполагавшихся к установке пластинчатых аппаратов.

    Исключительно малый габаритный объем аппаратов ТТАИ, т.е. их псевдоодномерность, открывает неожиданные возможности по радикальной экономии производственных площадей при создании индивидуальных теплопунктов (ИТП). Использование аппаратов ТТАИ позволило применить принципиально новую идеологию создания ИТП, т.н. «планшетные» ИТП. Такие ИТП вообще не занимают места в плане, а распределены по ограждающим конструкциям. Такая идеология по определению недоступна при использовании даже самых современных пластинчатых теплообменников. Для примера на фото 1 показан ИТП Киевской областной дирекции Укрсоцбанка, а на фото 2 – ИТП одного из промышленных объектов в Воронеже.

    Приведенные цифровые и визуальные данные подтверждают, что небольшой габаритный объем пластинчатых аппаратов тоже относится к области пусть красивых, но все же легенд.

    Легенда №3 – тонкостенность теплопередающих пластин

    и высокий коэффициент теплопередачи

    Описывая положительные потребительские свойства пластинчатых аппаратов, практически всегда отмечают их более высокий коэффициент теплопередачи, обосновывая это развитой турбулизацией потока и тонкостеностью теплопередающих пластин.

    Здесь мы вообще сталкиваемся с подменой понятий. Действительно, какое дело потребителю до того, за счет чего необходимый ему предмет (в данном случае теплообменник) имеет те или иные выдающиеся свойства. Ведь покупая автомобиль, мы не интересуемся, например, степенью сжатия рабочей смеси в цилиндре двигателя. Нам важно, чтобы двигатель имел необходимую мощность, потреблял меньше горючего, был более экологически чистым и т.д. и т.п. А за счет чего этого удалось добиться, нас не интересует. Зачем же навязывать потребителю теплообменников информацию о том, за счет чего удалось добиться столь малых массо-габаритных характеристик пластинчатых теплообменников? Не для создания ли псевдонаучного обоснования недосягаемости этих аппаратов другими типами теплообменников?

    Впрочем, раз уж тема обозначена и активно обыгрывается, есть необходимость осуществить предметный ее анализ. Итак, главный технический (подчеркнем еще раз – не потребительский) показатель – коэффициент теплопередачи. Сопоставительный анализ этого показателя для современных пластинчатых аппаратов и современных же кожухотрубных аппаратов, выпускаемых различными производителями (кроме аппаратов ТТАИ), уже не дает основания излишне оптимистично оценивать соответствующие значения для пластинчатых аппаратов [6]. Они, как правило, у пластинчатых аппаратов больше, но не настолько, чтобы придавать этому столь большое звучание. Но если же провести сравнение этого показателя пластинчатых теплообменников с теплообменниками ТТАИ, то ситуация и вовсе меняется на противоположную – коэффициенты теплопередачи пластинчатых аппаратов оказываются заметно меньше соответствующих величин аппаратов ТТАИ. Для наполнения этого утверждения конкретикой, приведем в качестве примера коэффициенты теплопередачи, характеризующие теплообменные аппараты для первого описанного в данной статье случая – с подогревом морской воды). Предложенный пластинчатый теплообменник имел значение 5854 Вт/(м2.оС), а аппарат ТТАИ имел значение 8397 Вт/(м2.оС). Превышение почти в 1,5 раза у аппаратов ТТАИ не оставляет никакого морального права говорить о более высоких коэффициентах теплопередачи пластинчатых теплообменников.

    Что касается рассуждений о высокой степени турбулизации и малой толщине пластин, то это совсем уж очевидно искусственный прием набора положительных качеств. Во-первых, это еще более узкоспециальные вопросы, чем даже коэффициент теплопередачи, и поэтому никак не долженствующие выходить на уровень потребителя. Во-вторых, специалистам известно, что на сегодня методы турбулизации для труб разработаны не хуже, а даже лучше чем для пластин. Поэтому, в частности, в теплообменниках ТТАИ осуществляется оптимальная турбулизация потока, не уступающая турбулизации в современных пластинчатых аппаратах.

    Говорить же об исключительно малой толщине пластин (к слову сказать, почти не влияющей в абсолютном большинстве случаев на коэффициент теплопередачи), достигающей 0,5 мм и даже, в пределе, 0,4 мм [7], тут же упоминая о достаточно высоких давлениях рабочих сред (на уровне 1,6 МПа), представляется даже не достаточно профессиональным. Ведь известно, что цилиндрическая оболочка лучше противостоит избыточным давлениям, чем плоская стенка. И действительно, аппараты ТТАИ уже более 10-ти лет выпускаются с трубками, имеющими толщину стенки 0,3 мм. Очевидно, что это меньше, чем 0,5 мм и даже чем 0,4 мм.

    Таким образом, становится ясно, что мнение о высоком коэффициенте теплопередачи пластинчатых теплообменников и об исключительно малых толщинах пластин вероятнее всего осознанно формировалось, как научно-техническая легенда.

    Легенда №4 – повышенный срок службы

    К существенным преимуществам пластинчатых теплообменников относят их повышенный срок службы. В качестве аргументации используются в основном ссылки на то, что, во-первых, пластины изготавливают из специальной нержавеющей стали, благодаря чему они не корродируют, во-вторых, пластины имеют соответствующий профиль, турбулизирующий поток, что предотвращает образование отложений, и, в-третьих, аппараты снабжаются резиновыми уплотнительными прокладками из резины EPDM , способной выдерживать достаточно высокие температуры [8]. Но предприятием «Теплообмен», как было отмечено выше, уже более 10 лет выпускаются кожухотрубные теплообменники ТТАИ, в которых, во-первых, трубки изготавливаются тоже из нержавеющей стали, причем точно тех же марок, что и пластины в пластинчатых аппаратах, во-вторых, трубки имеют специальный профиль, обеспечивающий такой же эффект турбулизации и предотвращение образования отложений и, в-третьих, для уплотнения используется идентичная по составу силиконовая резина, работоспособная в том же температурном диапазоне. Информация об этом уже много лет дается на многочисленных выставках, семинарах, конференциях и т.д., где принимают участие представители ООО «Теплообмен», а также публикуется в научно-технической периодике [9,10,11].

    Следовательно, активно распространяемая информация о повышенном сроке службы пластинчатых аппаратов по сравнению с кожухотрубными тоже не более чем легенда.

    Легенда №5 – легкость технического обслуживания

    В качестве одного из существенных преимуществ пластинчатых теплообменников выделяется такое его свойство, как легкость технического обслуживания. Это действительно важный показатель назначения теплообменников, т.к. не существует техники, которую не требовалось бы обслуживать, а обслуживание на месте эксплуатации, в условиях котельной или энергетического цеха, всегда создает дополнительные сложности. Поэтому возможность разобрать пластинчатый теплообменник и доставить пластины, например, в мастерскую, чтобы их там очистить или заменить, дает этим аппаратам преимущество по сравнению с кожухотрубными, но опять же необходимо подчеркнуть, более полувековой давности, аппаратами. Если не лукавить и осуществлять сравнение с современными кожухотрубными теплообменниками, в частности с аппаратами ТТАИ (кстати, тоже разборными вплоть до извлечения трубного пучка из корпуса [12]), то это преимущество пластинчатых аппаратов также из разряда конкретных переходит в разряд легенд. Дело в том, что при разборке и сборке пластинчатых теплообменников, что приходится выполнять на месте их эксплуатации, зачастую (а применительно к варианту использования клеевых уплотнительных прокладок – всегда) страдают многочисленные резиновые уплотнительные прокладки, имеющие сложную форму, и их требуется заменять. Однако стоимость комплекта таких прокладок сопоставима с ценой нового теплообменника (составляет порядка 30% полной стоимости нового пластинчатого теплообменника). В то же время в теплообменниках ТТАИ резиновые прокладки имеют исключительно простую кольцевую формы, их всего две штуки, да и менять их (если в этом возникнет необходимость) придется не на месте эксплуатации, а в приспособленном для техобслуживания помещении. Обеспечивается это тем, что, как отмечалось выше, теплообменники ТТАИ в среднем в 10 раз легче современных пластинчатых аппаратов. Поэтому всегда, когда возникает необходимость выполнить техобслуживание аппарата, имеется легко реализуемая возможность теплообменник ТТАИ целиком, не разбирая на месте, доставить в специально приспособленное для этого помещение (мастерскую, ремонтный участок и пр.). В соответствующих условиях осуществить необходимые работы и вернуть аппарат на место. Ведь самый тяжелый теплообменник ТТАИ, используемый уже не в ИТП, а в крупных ЦТП, весит порядка 60 кг. Очевидно, что такой теплообменник легко демонтирует и доставит к месту обслуживания бригада из 3-х и даже 2-х человек. Чего уж никак не скажешь про пластинчатый теплообменник весом более полутонны. Значит, его придется все же разбирать, а главное, потом собирать на месте. Это удается успешно сделать далеко не всегда даже специалистам, а штатному персоналу котельных тем более.

    Таким образом, информация о легкости выполнения технического обслуживания пластинчатых теплообменников на поверку является тоже легендой.

    Эпилог

    Вышеперечисленные и ряд не названных, менее популярных легенд, активно пропагандируемых в течение последнего десятилетия, создали миф о выдающихся свойствах зарубежных пластинчатых теплообменников, породивший, с одной стороны, мнение о необходимости применения только таких аппаратов, а с другой стороны, вызвавший к жизни бум по организации сборочных или даже почти полномасштабных производств таких аппаратов. На самом же деле это действительно высокоэффективные и высококачественные теплообменные аппараты, но они не являются панацеей. В ряде случаев их применение оправдано и на сегодня является наиболее оптимальным. Но в большинстве случаев им есть достойная альтернатива и даже больше, зачастую современные кожухотрубные аппараты, превосходят современные пластинчатые теплообменники по всему комплексу потребительских свойств. Десятилетний опыт эксплуатации в условиях СНГ почти двух тыс. теплообменников ТТАИ, выпущенных за это время, позволяет с уверенностью сказать, что утверждение о безальтернативности пластинчатых аппаратов (такие пассажи доводилось встречать в научно-технической периодике) не более чем миф.

    Располагая достоверной информацией о состоянии дел в этой области, хочется подчеркнуть, что если бы за минувшее десятилетие хотя бы 10% финансовых средств, ушедших в адрес западноевропейских фирм в оплату за пластинчатые аппараты, были адресованы фирмам, работающим в этом направлении и использующим задел еще советских научных исследований оборонного комплекса, то, может быть, и не родился бы тот миф, развенчанию которого посвящена настоящая статья и на сегодня применялись бы и высокоэффективные пластинчатые, и массово применялись бы не менее высокоэффективные кожухотрубные аппараты отечественной разработки Впрочем, еще не все потеряно.

    Литература

    1. «К вопросу выбора типа водо-водяных подогревателей для систем теплоснабжения», Пермяков В.А. и др., «Промышленная энергетика», М., 2000г., №4,стр. 37-44.

    2. «Результаты испытаний головных образцов водо-водяных подогревателей для систем теплоснабжения», Балуев Б.Ф. и др., Труды НПО ЦКТИ, Санкт-Петербург, 2002г., стр. 163-175.

    3. «Теплообменные аппараты ОПТО для систем снабжения теплом и горячей водой», Пермяков В.А. и др., Труды НПО ЦКТИ, Санкт-Петербург, 2002г., стр. 147-162.

    4. «Тонкостенные кожухотрубные аппараты», Барон В.Г., «Вентиляция, отопление кондиционирование (АВОК)», М.,2000г., №3, стр. 62-64.

    5. «Тонкостенные теплообменные аппараты интенсифицированные (ТТАИ). Общий анализ ситуации», Барон В.Г., «Энергосбережение», Донецк, 2002г.,№7, стр. 20-22.

    6. «О некоторых проблемах создания высокоэффективных трубчатых теплообменных аппаратов», Дрейцер Г.А., Труды международного симпозиума по тепло-массообмену, Минск, 2004.

    7. «Пластинчатые теплообменники Альфа Лаваль. Есть ли предел совершенству?», «Теплоэнергоэффективные технологии», Санкт-Петербург, 2003г., №1, стр.40-44.

    8. «Некоторые вопросы проектирования автоматизированных тепловых пунктов», Баранов В.В., «Теплоэнергоэффективные технологии», Санкт-Петербург, 2002г., №2, стр.44-47.

    9. «Кожухотрубные теплообменные аппараты конца ХХ века», Барон В.Г., «Нетрадиционные и возобновляемые источники энергии», Одесса, 2000г., №2(5), стр. 34-36.

    10. «Теплообменные аппараты типа ТТАИ и специфические особенности индивидуальных тепловых пунктов», Барон В.Г., «Новости теплоснабжения», М., 2000 г., октябрь, стр. 24-27.

    11. «Тонкостенные теплообменные интенсифицированные аппараты – альтернатива пластинчатым теплообменникам», Барон В.Г., «Теплоэнергоэффективные технологии», Санкт-Петербург, 2003г., №4, стр.52-55.

    12. «Непривычные особенности привычных кожухотрубных теплообменных аппаратов», Барон В.Г., «Холодильный бизнес», М., 1999г., №6, стр. 27-29.

  • Метки , ,
    Опубликовано в: Статьи | Comments Closed

Обратный звонок

Заполните обязательные поля, отмеченные звездочкой!





Нажимая на кнопку Отправить, Вы даете согласие на обработку персональных данных и принимаете условия «Пользовательского соглашения», в том числе п.3 «Политика конфиденциальности».

icq: 645-946-644
  • 27.03.2020
  • Изменение режима работы в период с 28.03.2020 по 05.04.2020г.

  • В целях соблюдения указа Президента РФ об объявлении не рабочей недели в период с 28 марта 2020г. по 5 апреля в связи с ситуацией по распространению новой коронавирусной инфекции COVID-19, сообщаем, что вынуждены перейти на удаленную работу.

  • Подробнее
  • 04.04.2018
  • Отгрузка уровнемера УСК-ТЭ-100

  • Промышленная группа Империя произвела отгрузку скважинного уровнемера модели УСК-ТЭ-100 (диапазон измерений от 0 до 100 метров) в Нижегородскую область. Уровнемер УСК-ТЭ-100 и другие скважинные уровнемеры в период с 01.03.2018 г. по 09.05.2018 г., предлагаются со скидкой -10% от стандартной стоимости прайс-листа. Успевайте сделать заказ!

  • Подробнее
  • 12.03.2018
  • Воздухосборник проточный А1И: снижение цен

  • Проточный воздухосборник А1И является важным элементом системы отопления, необходимым для удаления воздуха из теплоносителя. Вы можете приобрести воздухосборники проточные серии 5.903-2 и 5.903-20 по выгодной цене от 3350 рублей.

  • Подробнее

Измерение уровня подземных вод как основа экологического мониторинга

В сфере гидрогеологии для произведения экологического мониторинга прежде всего необходимо измерить уровень подземных вод. Незаменимым помощником в осуществлении этого является скважинный уровнемер. Уровнемер скважинный представляет собой трос необходимой длины с метками, намотанный на катушку.

далее

Установка абонентских грязевиков системы отопления: необходимость или излишество

Абонентский грязевик применяется для очистки теплоносителя от посторонних частиц грязи, ржавчины и прочих примесей. Нельзя недооценивать, важность применения грязевиков в системах отопления. Их значимость доказала свою эффективность в сложных системах, имеющих в составе большое количество регулирующей арматуры.

далее

Уровнемеры скважинные из наличия со склада в Екатеринбурге

Прмышленная группа «Империя» является поставщиком гидрогеологического оборудования: уровнемеры скважинные, рулетки гидрогеологические, термометры. Продукция реализуется из наличия со склада в Екатеринбурге. Вы также можете заказать изготовление партии в срок от 7 до 15 дней (срок зависит от количества).

далее
center