Сделать стартовой |  Добавить в избранное  
Главная Написать письмо Карта сайта
  • Особенности водоводяных подогревателей ВВП

    Подогреватели водоводяные ВВП достаточны просты в  применении. Они устанавливаются в котельных для подогрева воды в отопительных системах  и системах ГВС (горячего водоснабжения)  с котлами низкого давления. Теплоносителем в данном оборудовании служит вода.

    Подогреватель воды ВВП, ПВВКонструкция стандартного водоводяного подогревателя состоит двух основных частей — бесшовных стальных труб, являющихся корпусом подогревателя, и трубной системы.

    Длинна корпуса подогревателя может составлять 2, либо 4 метра, а внешний диаметр составляет 57, 76, 89, 114, 168, 219, 273, 325, 377 мм.

    Трубная система подогревателя ВВП может быть выполнена из нержавеющей стали или из латуни и состоит из трубок диаметром 16 мм в количестве от 4 до 211 штук (в зависимости от производительности подогревателя). Концы трубной системы завальцованы в трубные доски. Площадь нагрева подогревателя ВВП составляет от  0,38 до 40,1 квадратных метров.

    Водоводяные подогреватели ВВП могут быть односекционными и многосекционными.  Соединение секций осуществляется при помощи калачей.

    Принцип работы водоводяного подогревателя основан на следующем. Через штуцер входной в теплообменник подается поток проточной воды, который потом перемещается по трубкам. Теплоноситель (горячая вода из котла), который подается в межтрубное пространство, проходит через всю секцию и перетекает по калачам в следующие. Горячая вода передает тепловую энергию холодной воде, таким образом происходит подогрев проточной воды без перемешивания нагреваемого и греющего вещества.  На выходе из подогревателя на воду устанавливается датчик температуры, подающий сигнал терморегулятору котла.  Максимально допустимое давление воды для работы подогревателя 1 МПа.

    В применении подогревателей ВВП есть некоторые моменты, которые мы обсудим далее.

    Так, эффективность теплообмена повышается благодаря движению греющей и нагреваемой воды навстречу друг другу с примерно одинаковой скоростью. Трубки в трубной системе расположены максимально близко, что способствует обеспечению компенсации разницы площади сечения межтрубного пространства с суммой диаметров трубок и выравниванию скорости потока греющего и нагревающего вещества.

    Исключение провисания трубной системы и повышение эффективности теплоотдачи происходит благодаря установке специальных поддерживающих перегородок.

    В предусмотрении температурной компенсации водоводяного подогревателя нет необходимости, так как не происходит температурных деформаций ее компонентов ввиду противоточного движения воды в системе.

    Для исключения образования накипи в межтрубном пространстве подогревателя, а соответственно увеличения цикла работы оборудования на входе греющей воды устанавливаются смягчающие фильтры.

    Чтобы компенсировать увеличение расхода горячей воды применяется линзовый компенсатор.

     


    Промышленная группа Империя предлагает водоподогреватели ВВП, подогреватели водоводяные ПВВ, подогреватели ПВ из наличия со склада в Екатеринбурге, Челябинске, Перми, Тюмени, Новосибирска. Наши цены на подогреватели воды кожухотрубные марки ВВП Вас приятно удивят. Мы сотрудничаем с широким списком транспортных компаний, которые доставят необходимый Вам кожухотрубчатый подогреватель в любой регион РФ.

     

  • Метки , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Рекомендации по выбору пластинчатых теплообменников

    Конструктивные особенности пластинчатого теплообменника таковы, что при эксплуатации не должно возникать утечек. В случае появления утечек это может означать, что вы остановили свой выбор на теплообменнике плохой конструкции. Для правильного выбора пластинчатых теплообменников необходимо обращать внимание на следующие показатели.
    1. Важно, чтобы рама теплообменника была замкнутой и длинной. Это облегчит и упростит осмотр внутренних поверхностей пластинчатого теплообменника и их обслуживание.
    2. Так как теплообменники работают при широком диапазоне рабочих давлений до 25 бар, то и рамы должны иметь разную массу и прочность (эти показатели рассчитываются в зависимости от рабочего давления)
    3. Обратите внимание на простоту разборки больших теплообменников. Гайки должны быть оснащены упорными подшипниками, чтобы не прикипать при долгой работе подогревателя, и легко откручиваться.
    4. Прокладки могут крепиться на пластинах двумя основными способами – клеевым или механическим. Механическое крепление предпочтительнее, благодаря ряду преимуществ. При помощи такого способа возможно зафиксировать прокладку в желобках пластин максимально прочно и точно. Простота и дешевизна механического крепления, по сравнению с клеевым, также является его неоспоримым достоинством. Клеевое крепление требует материальных затрат на замену клея при ремонте или смене клеевых прокладок.
    5. Огромное значение имеет плотность пакета пластин. Необходимо, чтобы прокладки были закреплены в желобках пластин настолько прочно, чтобы выдержать избыточное давление.
    6. Уточните, возможно ли применение прокладок разных типов резины, так как для температуры ниже 90 оС рекомендуется применять прокладки из нитриловой резины (это позволит сэкономить на стоимости теплообменника), а при температуре до 150 оС — прокладки из EPDM (более высокой стоимости).
    7. Резина прокладок должна быть устойчивой к агрессивным химическим веществам, которые могут быть применены при химической очистке пластинчатых теплообменников.
    8. Обратите внимание на марку стали, из которой изготовлен теплообменник. Необходимо, чтобы сталь была коррозиеустойчива, а в случае эксплуатации теплообменника в системах горячего теплоснабжения, сталь должна быть стойкой к воздействию свободных ионов хлора.
    9. Чтобы не загрязнять горячую воду окислами железа, возникающими при соприкосновении теплоносителей со стяжными плитами теплообменника из углеродистой стали важно, чтобы была возможность покрыть «порты» теплообменника нержавеющей сталью.
    10. Приоритетнее выбирать теплообменники без приварных швов. Это упрощает и облегчает их конструкцию, а также уменьшает возможность возникновения утечек через сварные швы.
    11. Пластины должны быть оборудованы распределительным участком для распределения потока жидкости так, чтобы не оставалось зон с пониженной скоростью не участвующих в процессе теплообмена. Благодаря этому, достигается максимальная эффективность использования поверхности теплообмена и сводится к минимуму возможность выпадения взвесей в осадок.

  • Метки , , , , , , , , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Водоуказательные приборы

    В котельных для определения уровня воды используются водоуказательные приборы с круглым и плоским стеклом, сниженные указатели уровня и водопробные краны.
    Работа водоуказательных приборов основана на законе сообщающихся сосудов: вода в сообщающихся сосудах устанавливается на одном уровне независимо от формы сосудов.
    Водоуказательный прибор является основным прибором для определения уровня воды в паровых котлах, подогревателях и теплообменниках. На каждом котле должно быть не менее двух водоуказательных приборов. В котлах паропроизводительностью менее 0,7 т/ч возможна замена одного из них двумя пробными кранами, которые размещаются на низшем и высшем допустимых уровнях воды в котле.

    Водоуказательный прибор (рис. 49) состоит из круглого или плоского стекла и кранов (парового, водяного и продувочного).

    Рис. 49. Водоуказательные приборы

    Рис. 49. Водоуказательные приборы:
    а — плоское водомерное стекло; б — водопробный кран: 1 — корпус;
    2 — отверстие для очистки; 3 — рукоятка; 4 — пробка крана; 5 — проходное отверстие; в — сниженные водоуказатели: 1, 10, 14-сосуды, 2-поплавок;
    3 — трос; 4, 8, 9 — соединительные трубки; 5 — клапан; 6 — водомерное стекло; 7-стержень; 11 — переливная трубка; 12 — грязевик; 13 — водомерное стекло

    Водоуказательные приборы с круглым стеклом устанавливаются на паровых котлах и баках с давлением до 0,7 кгс/см2. Высота стекла в водоуказательном приборе может быть от 200 до 1 500 мм, диаметр — 8-20 мм, толщина стекла 2,5-3,5 мм. Стеклянные трубки устанавливаются в краны и уплотняются с помощью набивки из колец.
    Водоуказательный прибор с плоским стеклом (рис. 49, а) состоит из металлической рамки, в гнездо которой вставляется на тонкой паронитовой прокладке плоское стекло, плотно прижатое к рамке крышкой с болтами.
    Плоское стекло может быть гладким или рифленым. Рифленое стекло «Клингер» (рис. 50) с внутренней стороны имеет вертикальные призматические канавки, а с внешней стороны отполировано. В таком стекле вода кажется темной, а пар светлым. Рифленое стекло выпускается с 1-го по 9-й номер длиной 115- 340 мм, а гладкое — шести номеров — 140-340 мм.
    В рамку сверху и снизу вкручиваются штуцеры 2, которыми рамка устанавливается в паровой и водяной краны. Для уплотнения в кольцевой зазор закладывают кольца из асбестового шнура.
    Если при работе парового котла краны водоуказательного прибора не загрязнены, то уровень воды в нем слегка колеблется.
    При загрязнении водяного крана уровень воды становится неподвижным, а если засорился паровой кран, водоуказательный прибор заполняется водой выше действительного уровня. Продувку проводят каждую смену.

    Рис. 50. Водоуказательный прибор "Клинер"

    Рис. 50. Водоуказательный прибор со стеклом «Клингер»
    1 — паровой кран; 2- штуцер; 3, 5, 13 — болты; 4 — крышка; 6 — продувочный кран;
    7 — водяной кран; 5 — прокладка; 9 — стекло;  6- продувочный кран;
    10 — сальниковая втулка; 11 — сальниковая набивка; 12 — корпус (рамка) стекла ;

    Из рабочего положения (паровой и водяной краны открыты, а продувочный закрыт) закрыть водяной.

    Последовательность продувки такова:

    кран — продувается водоуказательный прибор только паром;
    открыть водяной кран — продувается водоуказательный прибор паром и водой;
    закрыть паровой кран — продувается водоуказательный прибор только водой;
    открыть паровой кран — продувается водоуказательный прибор паром и водой;
    закрыть продувочный кран — вода должна быстро подняться к определенному уровню и слегка колебаться — этот уровень должен быть одинаковым с уровнем второго водоуказательного стекла. При такой последовательности продувки стекло водоуказатльного прибора будет все время горячим — это и обеспечит его целостность.
    Если водоуказательный прибор находится на высоте более 6 м от площадки наблюдения или уровень воды плохо просматривается, допускается установка двух сниженных указателей уровня воды. На них должны быть нанесены низший и высший допустимые уровни воды по водоуказательному прибору, который установлен на этом же котле. В этих случаях допускается установка одного водоуказательного прибора прямого действия.
    Сниженный указатель уровня (см. рис. 47, в) работает по принципу уравновешивания двух столбов воды в соединительных трубках. Цветная тяжелая жидкость, которая находится в них, имеет большую вязкость, чем вода и не смешивается с ней. Это может быть, например, четырехбромистый углерод с хлороформом и бензолом.
    На всех водоуказательных приборах против допустимого низшего уровня воды в котле должен быть установлен неподвижный металлический указатель с надписью «НДУ». Этот указатель должен быть установлен не менее чем на 25 мм выше нижней видимой кромки стекла водоуказательного прибора. Такой же указатель устанавливается ниже на 25 мм верхней видимой кромки стекла с надписью «ВДУ», соответствующей высшему допустимому уровню воды в котле.

  • Метки , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Системы водяного отопления и горячего водоснабжения: их назначение и устройство

    Системы водяного отопления, их назначение и виды

    Для отопления помещений используются местные и центральные системы отопления.

    Местной называется такая система отопления, в которой тепло используется непосредственно в отапливаемом помещении — печное отопление, газовые или электрические водонагреватели.

    Центральной называется система отопления, в которой генератор тепла (котел или теплообменник) находится за пределами отапливаемого помещения.

    В зависимости от количества отапливаемых домов системы центрального отопления — домовые, групповые, квартальные и районные, а от используемого теплоносителя (вода, пар или воздух) — водяные, паровые или воздушные.

    Системы водяного отопления наиболее распространены, гигиеничны и легко регулируются в соответствии с температурой окружающего воздуха.

    Системы парового отопления не гигиеничны из-за пригорания пыли, которая находится в воздухе, на поверхности нагревательных приборов, плохо поддаются регулированию и из-за этого используются, как исключение, для производственных, коммунальных и общественных помещений.

    Воздушные системы отопления из-за плохого регулирования можно использовать только для отопления больших промышленных помещений и магазинов.

    Центральные системы водяного отопления подразделяются: по способу циркуляции — с естественной и искусственной; по размещению распределительных трубопроводов — с верхней и нижней разводкой;
    по схеме присоединения нагревательных приборов к стоякам — однотрубные и двухтрубные.

    Системы отопления с естественной циркуляцией. Работа системы отопления с естественной циркуляцией основана на свойстве воды увеличиваться в объеме при нагревании и уменьшаться — при охлаждении. С увеличением температуры плотность воды уменьшается, т. е. вода в обратном стояке — тяжелее, чем в подающем и благодаря этому охлажденная вода опускается вниз, своей массой вытесняет нагретую воду из котла в трубопровод горячей воды и поступает в котел, где нагревается.

    Системы отопления с естественной циркуляцией допускаются только в малоэтажных зданиях с индивидуальной котельной при радиусе действия не более 30 м.

    Системы отопления с искусственной циркуляцией. Для многоэтажных домов с радиусом действия более 30 м используются системы отопления с искусственной (насосной) циркуляцией, которая наиболее полно обеспечивает преодоление сопротивления движению воды по трубам.

    При эксплуатации система отопления всегда заполнена водой. Установленные в котельной циркуляционные насосы должны создавать напор, необходимый для преодоления сопротивления сети и подключенных систем отопления.
    Высокое давление в трубопроводах дает возможность одной котельной обогревать большое количество домов.
    Двухтрубные системы отопления. Двухтрубными системы называются потому, что в них используются для питания нагревзгельных приборов и для отвода охлажденной воды используются две самостоятельные трубы. Такие системы водяного отопления с естественной и искусственной циркуляцией могут быть с верхней или нижней разводкой.

    В системе с верхней разводкой нагретая в котле вода по главному стояку подается вверх в разводящую магистраль, которая проходит по чердаку или техническому этажу помещения и по распределительным стоякам движется сверху вниз, поступая в нагревательные приборы.

    Воздух из котла, трубопроводов и нагревательных приборов удаляется через клапаны, которые установлены в верхних точках ото¬пительной системы.
    В системах отопления с нижней разводкой вода из котла поступает в подающий трубопровод, который проложен в подвалах или в каналах под полом первого этажа и по распределительным стоякам движется снизу вверх, поступая в нагревательные приборы.
    Воздух выпускается через краны в верхних пробках нагреватель¬ных приборов на верхнем этаже помещения.
    Однотрубные системы отопления. В этих системах нагревательные приборы обеими подводками подключены к одному и тому же стояку.

    Системы горячего водоснабжения, их назначение и устройство
    Горячее водоснабжение используется для жилых и общественных помещений. Вода при этом должна иметь температуру не менее 60 °С и отвечать требованиям ГОСТа к питьевой воде. Системы горячего водоснабжения могут быть местные и централизованные.

    В местных системах, рассчитанных на одну-две квартиры, вода нагревается вблизи места потребления в газовых водонагревателях, колонках, змеевиках. В централизованных системах вода нагревается в определенном месте (ЦТП, котельная) и затем транспортируется по трубам к многочисленным точкам водорозбора.

    При этом вода нагревается:

    • в водоподогревателях котельных с паровыми или водогрейными котлами;
    • в водоводяных подогревателях ЦТП, с использованием теплоносителя от квартальных (районных) котельных или ТЭЦ (закрытые системы теплоснабжения);
    • от тепловой сети квартальных (районных) котельных или ТЭЦ (закрытые системы теплоснабжения).

    В котельных с паровыми или водогрейными котлами вода для горячего водоснабжения нагревается в емкостных или скоростных водонагревателях. Такие системы горячего водоснабжения могут быть с верхней и нижней разводкой (рис. 96).

    Вода нагревается по следующей схеме: пар из котла поступает в змеевик емкостного водоподогревателя, нагревает воду, которая находится в межтрубном пространстве и конденсируется. Вода подогретая до 60-70 °С под давлением городского водопровода подается в водоразборные краны, а конденсат по конденсатопроводу поступает в котел. Если водоподогреватель находится выше паросборника, конденсат двигается в котел самотеком, а если на уровне или ниже — с помощью насоса.

    Схема принципиально не изменится, если в водоподогреватель будет подаваться не пар, а горячая вода от водогрейного котла. В этом случае охлажденная вода через обратный трубопровод поступает в котел для повторного нагревания.

    Системы горячего водоснабжения разделяются на тупиковую и с циркуляционными стояками.
    На рис. 96, а показана тупиковая схема горячего водоснабжения с нижней разводкой, в которой не предусмотрена возможность цир¬куляции воды при отсутствии водоразбора, в результате чего вода в трубах охлаждается.
    Поэтому такие схемы предусматриваются в основном в малоэтажных жилых домах, а также в столовых, банях, прачечных, где горячая вода используется беспрерывно.

    Если к системам горячего водоснабжения домов любой этажности подключены полотенцесушители, то в таких схемах предусматривается циркуляция воды через специальные циркуляционные стояки (рис. 96, б). При этом даже при длительном отсутствии водоразбора в кранах всегда будет горячая вода, так же — в помещениях высотой более четырех этажей, если в них не установлены полотен- цесушители.

    Схема системы горячего водоснабжения

    Рис. 96. Система горячего водоснабжения с нижней и верхней разводной: а — тупиковая с нижней разводкой; б-с циркулярными стояками и верхней разводкой

  • Метки , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Паяный и разборный теплообменники. Какой выбрать?

    Большая часть российских теплоснабжающих организаций имеют обширный опыт эксплуатации пластинчатых теплообменников, отдавая при выборе предпочтение разборным и указывая обычно две основные причины. Причины в том, что разборные аппараты поддаются механической очистке, и в случае ошибки в расчетах или изменения присоединенной нагрузки количество пластин можно легко изменить на месте. Между тем обе эти причины не являются объективным препятствием для использования паяных теплообменников на отечественном рынке.

    Ведущие теплоснабжающие компании приводят три аргумента, подтверждающие преимущества паянных теплообменников по сравнению с разборными:

    1) длительный срок службы (в среднем 20 лет, при сроке службы разборных теплообменников менее 10лет);

    2) высокая надежность аппарата (вследствие жесткой системы контроля качества, принятой у предприятий-производителей, включающей 100%-й выходной контроль теплообменников давлением до 40 бар), исключающая возможность протечек между пластинами;

    3) более высокий коэффициент теплопередачи.

    Следует отметить, что эти положительные моменты пока касаются лишь импортного оборудования; российские паяные теплообменники вышли на рынок не так давно, и, по мнению отдельных специалистов, нашим производителям еще предстоит доработать их качество.

    Также следует отметить, что область использования паяных теплообменников имеет определенные ограничения. Таким ограничением является верхний предел мощности, который, по мнению специалистов, не должен превосходить 5 МВт, хотя некоторые производители называют и большие значения. Таким образом, становится понятным широкое распространение паяных теплообменников в Северной Европе, где используется двухтрубная система с ИТП сравнительно малой мощности в каждом доме.

    От себя добавим еще две причины, которые очень актуальны для российского использования. Это: устойчивость к длительным высокотемпературным нагрузкам (при температуре в подающем трубопроводе >120°С срок службы прокладок в разборном теплообменнике существенно
    сокращается); высокая механическая прочность, позволяющая выдержать гидравлические удары,
    выводящие из строя разборные теплообменники.

    Однако не только эти причины должны определять выбор в пользу одного или другого типа
    теплообменника. Сегодня на российском рынке основным критерием выбора остается стоимость
    оборудования и его монтажа. В таблице ниже мы не стали приводить конкретные цены, а лишь
    сравнили стоимость паяных и разборных теплообменников, принимая стоимость паяного в каждом
    случае за 100%. Результаты расчета показали: чем меньше теплообменник, тем выгоднее выбирать
    паяный. Просмотрим результаты для шести характерных примеров (табл. 1). Дополнительное
    преимущество – меньший вес и габариты теплообменников, что также отражено в таблице.
    Таким образом, можно считать, что существующие мифы о преимуществах разборных теплообменников перед паяными основаны на плохом знании рынка теплообменного оборудования и низкой культуре эксплуатации. Паяные теплообменники по многим характеристикам, в т. ч. по энергоэффективности, превосходят разборные.

    Табл.1. Сравнение паяных и разборных теплообменников.

    Тип

    Мощность, кВт Потеря напора Коэффициент теплопе­редачи, Вт/м2К Запасповер­хности нагре­ва, % Коли-чество плас­тин Габариты: длина/шири­на/высота Вес: пустой/ заполнен­ный, кг Сопостав- ление цен
    Пер­вичный контур Вто­ричный контур

    Пример 1 отопление

    Паяный 150 8 10 16 47х111х310 3,28/4,02 100%
    Разборный 150 4 5 16 300х180х480 32,6/33,9 191%
    Пример 2 отопление
    Паяный 200 7 16 5573 19 60 154х112х526 15,7/21,1 100%
    Разборный 200 5 15 4690 11 25 595х320х920 142/148 176%
    Пример 3 ГВС
    Паяный 250 9 6 3858 0 80 202х112х526 20,3/27,7 100%
    Разборный 250 7 4 3419 0 34 595х320х920 153/167 162%
    Пример 4 отопление
    Паяный 400 9 25 5947 6,8 60 181х191х618 33,4/47,6 100%
    Разборный 400 8 25 5302 1 43 595х320х920 156/168 115%
    Пример 5 ГВС
    Паяный 500 13 7 4183 7,2 50 238х191х618 42,2/61,3 100%
    Разборный 500 12 6 3827 0 55 795х320х920 165/181 117%
    Пример 6 отопление
    Паяный 500 8 23 5724 10,7 50 238х191х618 42,2/61,3 100%
    Разборный 500 7 21 5313 0 56 795х320х920 174 / 197 119%
    Источник: ТехСовет №10 октябрь/2010г.
  • Метки , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Устройство разборных пластинчатых теплообменников

    Устройство пластинчатого теплообменника

    Устройство пластинчатого теплообменника

    Аппарат состоит из группы теплообменных пластин 1, подвешенныхк горизонтальной верхней штанге 5.  Концы верхней и нижней штанг закреплены в неподвижной плите 2 и на стойке 7. В собранном состоянии пластины при помощи прижимной плиты 3 и прижимных болтов 4 плотно сжимаются в один пакет. Пластины в разборных теплообменниках разделены прокладками, уплотняющими межпластинные каналы при сборке теплообменника. В рабочем положении
    собранные в пакет пластины плотно прижаты друг к другу и пространство канала, образующегося
    между пластинами, герметично по отношению как к другому каналу, так и к внешней среде.

    Каждая пластина на лицевой стороне имеет резиновую контурную прокладку, ограничивающую канал для потока рабочей среды и охватывающую два угловых отверстия (по одной стороне пластины или по диагонали), через которые проходит поток рабочей среды в межпластинный канал и выходит из него, а через два других отверстия, дополнительно изолированные малыми кольцевыми прокладками, встречный теплоноситель проходит транзитом. Уплотнительные прокладки разборного пластинчатого теплообменника крепятся на пластине таким образом, что после сборки и сжатия пластины в аппарате образуют две системы герметичных межпластинных каналов, изолированных друг от друга металлической стенкой и прокладками: одна для греющей среды, другая для нагреваемой. Обе системы межпластинных каналов соединены со своими коллекторами и далее со штуцерами для ввода и вывода рабочих сред, расположенных на неподвижных опорных плитах.

  • Метки , , , , , , , , , , , , ,
    Опубликовано в: Это нужно знать | Comments Closed
  • Проблемы водоподготовки для котельных

    Надежность и эффективность работы теплоэнергетического оборудования, а также состояние тепловых сетей напрямую зависят от правильного ведения водно-химического режима и водоподготовки, как его важнейшей составной части. В «малой энергетике» России водоподготовка, к сожалению, далеко не всегда находится на должном уровне.

    В котельных, как правило, не хватает квалифицированного обслуживающего персонала, отсутствуют необходимые приборы и оборудование для определения качества воды и пара, что зачастую приводит к самым неприятным последствиям. До некоторой степени «уравновесить» низкий уровень эксплуатации можно за счет применения надежного автоматизированного водоподготовительного оборудования, ассортимент которого на рынке достаточно велик (к сожалению, только импортного).

    В остальном эта проблема имеет организационный характер. Попытки решить ее при помощи сервисного обслуживания не всегда приводят к успеху по той причине, что фирмы, осуществляющие такое обслуживание, обычно подразумевают под сервисом проведение ежемесячного анализа и замену вышедших из строя деталей.

    Между тем, при нарушении водно-химического режима за месяц котел может полностью выйти из строя. Поэтому сервисное обслуживание должно обязательно включать оснащение котельной приборами, обучение персонала проведению элементарных анализов и действиям при отклонениях качества воды от нормы.

    Рис.1. Схема деминерализации воды

    Схема деминерализации воды

    Примечание: TDS (Total Dissolved Solids) —  суммарное количество всех растворенных в воде примесей — солей.

    Таблица

    В ходе деминерализации из воды удаляются практически все соли. При этом сырая вода проходит через слои ионообменной смолы, как для катионного, так и анионного обмена (рис. 1). Иногда эти слои находятся в одной емкости, иногда в разных. При деминерализации из воды удаляются практически все минералы, и на выходе получается вода очень высокого качества, практически не содержащая растворенных твердых веществ. Она используется в котлах с очень высоким давлением, например, в тех, что применяются на электростанциях. Если в сырой воде содержится много взвешенных твердых частиц, она быстро приводит в негодность ионообменную смолу, что очень сильно увеличивает стоимость эксплуатации. В таких случаях рекомендуется предварительно обработать сырую воду, например, очистить ее или отфильтровать.

    В старых котельных эксплуатируется водоочистное оборудование, давно выработавшее ресурс. Технически эта проблема решается просто. «Старые» фильтры умягчения обычно рассчитывались на работу с сульфоуглем и с перспективой наращивания мощности, они сильно переразмерены, и на их место можно установить современное малогабаритное оборудование, позволяющее проводить водоподготовку по полной схеме — с предочисткой и коррекционной обработкой.

    В новых котельных во многих случаях по разным причинам устанавливаются системы, не обеспечивающие получения воды необходимого качества. В общем виде водоподготовка включает следующие стадии: предварительная очистка от взвесей, коллоидов, органики, железа (при момощи магнитных сетчатых фильтров) и т.п.; умягчение или деминерализация; удаление агрессивных газов 02 и С02; коррекционная обработка.

    На каждой из этих стадий совершаются свои ошибки: предочистка часто работает неэффективно или вообще отсутствует; установки умягчения/деминерализации не рассчитываются индивидуально, а подбираются по каталогам поставщиков или неоправданно подменяются комплексонной обработкой (заодно компрометируется этот метод, который на самом деле весьма эффективен, но при строго определенных условиях) или магнитной обработкой (которая тоже имеет право на существование, но не вместо водоподготовки); далеко не все котельные имеют деаэраторы, а там, где они установлены, не всегда отлажен режим их работы; коррекционная обработка воды практически нигде не ведется.

    Основная задача системы водоподготовки для котельных — предотвратить образование минеральных отложений на внутренней поверхности водогрейных котлов, теплообменников (подогревателей) и трубопроводов тепловых станций. Грамотный подбор систем водоподготовки, их правильная эксплуатация-залог надежной работы котельной предприятия.

    Источник: №3/2011г. ТехСовет

  • Метки , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Пластинчатый теплообменник

    Пластинчатый теплообменникТеплообменник пластиинчатый — устройство, в котором осуществляется передача тепла от горячего теплоносителя к холодной (нагреваемой) среде через медные, стальные, графитовые гофрированные пластины, которые стянуты в пакет. Горячие и холодные слои перемежаются друг с другом.

    Основным элементом пластинчатого теплообменника являются теплопередающие пластины, произведенные из коррозионно – стойких сталей толщиной 0,5 – 0,6 мм, методом холодной штамповки.

    В процессе теплообмена жидкости движутся навстречу друг другу (в противотоке). В местах их возможного перетекания находится либо стальная пластина, либо двойное резиновое уплотнение, что практически исключает смешение жидкостей.

    Основные размеры и параметры наиболее распространенных в промышленности пластинчатых теплообменников определены ГОСТ 15518—83. Их изготовляют с поверхностью теплообмена от 2 до 600 м2 в зависимости от типоразмера пластин; эти теплообменники используют при давлении до 1,6 МПа и температуре рабочих сред от —30 до +180° С для реализации теплообмена между жидкостями и парами (газами) в качестве холодильников, подогревателей и конденсаторов.

    По степени доступности поверхности теплообмена для механической очистки и осмотра пластинчатые теплообменники делятся на разборные, полуразборные (полусварные), неразборные (паяные и сварные).

    Разборные пластинчатые теплообменники системы TL

    Тип теплообменника

    Давление рабочее, атм.

    Давление испытательное, атм.

    Температура max, °C

    Расход max, м3/час

    Мощность, кВт

    TL50

    16

    20,8

    150

    25

    10-900

    TL90

    16

    20,8

    150

    30

    150-1500

    TL150

    16

    20,8

    150

    35

    300-1600

    TL250

    16

    20,8

    150

    165

    500-8000

    TL500

    16

    20,8

    150

    370

    500-12000

    TL650

    16

    20,8

    150

    450

    1000-21000

    TL850

    16

    20,8

    150

    700

    1500-28000

    Полуразборные (полусварные) пластинчатые теплообменники TL

    Тип теплообменника

    Давление рабочее, атм.

    Давление испытательное, атм.

    Температура max, °C

    Расход max, м3/час

    Мощность, кВт

    TL90

    16

    20,8

    150

    30

    150-1500

    TL150

    16

    20,8

    150

    35

    300-1600

    TL250

    16

    20,8

    150

    165

    200-8000

    TL400

    16

    20,8

    150

    100

    200-6000

    TL500

    16

    20,8

    150

    370

    500-12000

    TL650

    16

    20,8

    150

    450

    1000-21000

    TL850

    16

    20,8

    150

    700

    1500-28000

    Паяные пластинчатые теплообменники

    Типоразмер

    Давление рабочее, атм.

    Давление испытательное, атм.

    Диапазон рабочей температуры

    max, °C

    Разница температур (сторона1/сторона2)

    max, °C

    Расход,

    max,

    м3/час

    Мощность, кВт

    V200

    27

    31

    225

    B25TH/1P

    31

    50

    225

    100

    12

    250

    M12

    23

    30

    -50…200

    100

    3

    5-150

    M18

    30

    39

    -50…200

    100

    5

    10-250

    H/M/L.25

    30

    39

    -50…200

    100

    15

    50-600

    H/M/L.55

    30

    39

    -50…200

    100

    30

    300-1200

    M100

    30

    39

    -50…200

    100

    85

    500-3000




    Разборные пластинчатые теплообменники системы TL

    Разборный пластинчатый теплообменник VT

    Полуразборные (полусварные) пластинчатые теплообменники TL

    Паяные пластинчатые теплообменники

    Разборные теплообменники пластинчатые Tranter (Трантер)

    Спиральные теплообменники Tranter (Трантер)

    Сварные теплообменники SUPERMAX® и MAXCHANGER®


    Подбор пластинчатого теплообменника осуществляется по опросному листу:

    Опросный лист для заказа теплообменника

    Опросный лист для заказа пластинчатого теплообменника для хладоснабжения

    Опросный лист для заказа пластинчатого теплообменника на технологические процессы




  • Метки , , , , , , , , , , , , , , , , ,
    Опубликовано в: Теплообменное оборудование и подогреватели | Comments Closed
  • ОАО «ТГК-14» в Забайкалье нарушало порядок ценообразования на свои услуги

    ОАО «ТГК-14» в Забайкалье нарушало порядок ценообразования на свои услуги
    Борзинская межрайонная прокуратура выявила нарушения жилищных прав граждан со стороны ОАО «ТГК-14». Об этом 23 марта сообщили в пресс-службе прокуратуры Забайкальского края.

    Как рассказал помощник Борзинского межрайонного прокурора Д. Власов, данные нарушения были выявлены при осуществлении надзора за соблюдением жилищных прав граждан в сфере ЖКХ. В частности, ОАО «ТГК-14» допустило нарушение порядка ценообразования на предоставление населению услуг теплоснабжения, используя методику расчета потребляемой тепловой энергии для промышленных зданий — исходя не из площади жилого помещения, а из его объема. В результате, за счет жителей пос. Шерловая Гора и Харанор, включая пенсионеров и инвалидов, ОАО «ТГК-14» увеличила здесь свою прибыль почти в два раза.

    По итогам проверки Борзинский межрайонный прокурор возбудил в отношении данного предприятия дело об административном правонарушении, предусмотренном ч. 1 ст. 14.6 КоАП РФ (нарушение порядка ценообразования) и направил исковое заявление в суд с требованием произвести перерасчет за предоставленные населению по завышенным тарифам услуги. Суд состоялся 19 марта 2009 г., но уже до него, после вмешательства прокуратуры, ОАО «ТГК-14» в добровольном порядке произвело перерасчеты всем жителям пос. Шерловая Гора и Харанор, с которыми были заключены договора теплоснабжения с оплатой исходя из объемов жилого помещения. Им были возмещены убытки на суммы от 5 до 20 тыс. руб. Виновные в административном правонарушении привлечены к административной ответственности в виде наложения штрафов.

    24.03.2009 ИА REGNUM

  • Метки , , , , , ,
    Опубликовано в: Новости | Comments Closed
  • Поселок Холодный Сусуманского района Колымы обеспечен теплом (Магаданская область)

    Поселок Холодный Сусуманского района Колымы обеспечен теплом (Магаданская область)
    От слаженной и своевременно выполненной работы жилищно-коммунальных служб Колымы зависит комфортная жизнь населения. МУП ЖКХ «Коммунальщик» обеспечивает теплом, горячей и холодной водой жителей пос. Холодный Сусуманского района. О работе предприятия рассказал его руководитель И. Хиц:

    — Нынешний отопительный сезон проходит без особых срывов и аварийных ситуаций, жалоб от населения ни на температурный режим, ни на снабжение горячей и холодной водой нет. Такому результату способствовала хорошая подготовка к отопительному сезону — выполнен весь запланированный объем ремонтных работ, и конечно, в этом огромная заслуга коллектива — все работают с полной отдачей и ответственностью за порученное им дело.

    В настоящее время мы полностью обеспечены углем, хотя и имеется задолженность за поставленный уголь. Но с помощью администрации района часть долга погашена, надеемся в ближайшее время рассчитаться полностью.

    Если говорить о финансовом состоянии предприятия, то здесь ситуация менее благоприятная: долг за электроэнергию на сегодняшний день составил 1 млн 117 тыс. руб., за ГСМ и топливо — около 300 тыс. руб. Все зависит от финансирования, а оно оставляет желать лучшего. Если бы все средства поступали в полном объеме и в срок, тогда мы могли бы вовремя производить расчеты, закупать необходимые материалы, улучшить техническую базу.

    Не могу не сказать о еще одной проблеме — большой задолженности населения по оплате коммунальных услуг, свыше 5 млн руб., хотя раньше наш поселок считался самым дисциплинированным по сбору платежей от населения. К примеру, за прошлый год процент сборов у нас был одним из самых высоких в районе — 91,5%. А за февраль этого года он составил всего 37%.

    А ведь деньги, которые мы собираем, идут на ремонтные работы, заработную плату работникам, на закупку угля, топлива, всех необходимых материалов, и именно от коммунальных платежей зависит надежное функционирование систем жизнеобеспечения населения, а значит, комфортные условия в домах.

    Сейчас главная задача — нормально отработать до конца отопительного сезона. В перспективе — подготовка к новому отопительному сезону, выполнение намеченного объема ремонтных работ. В первую очередь, запланирован капитальный ремонт водокачки — установка новых свай и замена полового покрытия, а также ремонт жилого дома по ул. Пионерской 4, где предстоит замена систем холодного и горячего водоснабжения, канализации, частичная замена полов и крыши. Планируем продолжить ремонт крыши гаража, где в прошлом году мы произвели замену системы отопления и другие работы.

    23.03.2009 Север ДВ

  • Метки , , , , , , , ,
    Опубликовано в: Новости | Comments Closed

Обратный звонок

Заполните обязательные поля, отмеченные звездочкой!





Нажимая на кнопку Отправить, Вы даете согласие на обработку персональных данных и принимаете условия «Пользовательского соглашения», в том числе п.3 «Политика конфиденциальности».

icq: 645-946-644
  • 27.03.2020
  • Изменение режима работы в период с 28.03.2020 по 05.04.2020г.

  • В целях соблюдения указа Президента РФ об объявлении не рабочей недели в период с 28 марта 2020г. по 5 апреля в связи с ситуацией по распространению новой коронавирусной инфекции COVID-19, сообщаем, что вынуждены перейти на удаленную работу.

  • Подробнее
  • 04.04.2018
  • Отгрузка уровнемера УСК-ТЭ-100

  • Промышленная группа Империя произвела отгрузку скважинного уровнемера модели УСК-ТЭ-100 (диапазон измерений от 0 до 100 метров) в Нижегородскую область. Уровнемер УСК-ТЭ-100 и другие скважинные уровнемеры в период с 01.03.2018 г. по 09.05.2018 г., предлагаются со скидкой -10% от стандартной стоимости прайс-листа. Успевайте сделать заказ!

  • Подробнее
  • 12.03.2018
  • Воздухосборник проточный А1И: снижение цен

  • Проточный воздухосборник А1И является важным элементом системы отопления, необходимым для удаления воздуха из теплоносителя. Вы можете приобрести воздухосборники проточные серии 5.903-2 и 5.903-20 по выгодной цене от 3350 рублей.

  • Подробнее

Измерение уровня подземных вод как основа экологического мониторинга

В сфере гидрогеологии для произведения экологического мониторинга прежде всего необходимо измерить уровень подземных вод. Незаменимым помощником в осуществлении этого является скважинный уровнемер. Уровнемер скважинный представляет собой трос необходимой длины с метками, намотанный на катушку.

далее

Установка абонентских грязевиков системы отопления: необходимость или излишество

Абонентский грязевик применяется для очистки теплоносителя от посторонних частиц грязи, ржавчины и прочих примесей. Нельзя недооценивать, важность применения грязевиков в системах отопления. Их значимость доказала свою эффективность в сложных системах, имеющих в составе большое количество регулирующей арматуры.

далее

Уровнемеры скважинные из наличия со склада в Екатеринбурге

Прмышленная группа «Империя» является поставщиком гидрогеологического оборудования: уровнемеры скважинные, рулетки гидрогеологические, термометры. Продукция реализуется из наличия со склада в Екатеринбурге. Вы также можете заказать изготовление партии в срок от 7 до 15 дней (срок зависит от количества).

далее
center