Сделать стартовой |  Добавить в избранное  
Главная Написать письмо Карта сайта
  • Сальниковые компенсаторы: особенности конструкции и применения

    Сальниковый компенсатор трубопровода

    Односторонний сальниковый компенсаторКомпенсаторы трубопроводов предназначены для использования в конструкции тепловых сетей. С их помощью ведется компенсация термических деформаций на трубопроводе, по которому идет тот или иной теплоноситель. Это изделие воспринимает незначительные линейные деформации, которые являются следствием процесса воздействия среды на магистраль. Воздействующее усиление вызывает: просадка трубопровода, разница температур. Конструкционные особенности изделий не позволяют им компенсировать сдвиговые и осевые смещения. Этот тип деформации происходит под влиянием перепада температур.

     

     

    Особенности сальникового компенсатора

     

    Сальниковый компенсатор, в отличие от прочих типов изделий, получил более выраженную способность к эффекту компенсации. Технология его применения предполагает, что установка такого изделия в основном требуется при оборудовании магистральных трубопроводов со сварными стыковыми соединениями.

    Разрабатывают сальниковые компенсаторы с учетом требований водопроводов и паровых тепловых сетей, где они очень востребованы. Изделие способно выдерживать давление до 2,5 Мпа и бесперебойно работать при нагревании среды до 200°С при транспортировке воды и до 300°С при транспортировке пара.

     

    Устройство и классификация сальниковых компенсаторов

     

    Компенсаторы трубопроводов сальниковые разработаны по типовому проекту (серия 4,903-10, выпуск 7). Изделия имеют в своей конструкции корпус и подвижный стакан. Существует два вида продукции. Это изделия:

    односторонние сальниковые компенсаторы
    двусторонние сальниковые компенсаторы

    Односторонний сальниковый компенсатор характеризуется наличием одного подвижного стакана. Его диаметр условного прохода, от которого во многом зависит компенсирующая способность, равен 100-400 мм. В конструкции двусторонней версии подвижных стаканов два. Кроме того, у двустороннего изделия более удлиненный корпус, а диаметр условного прохода может достигать 800 мм. Конструкционные особенности двустороннего изделия гарантируют более высокую компенсацию воздействия. Она в два раза выше, чем у одностороннего компенсатора.

     

     

    Область применения сальниковых компенсаторов

     

    Основные сферы применения этого важного изделия — теплосети и водопроводы. Для установки изделий необходимы камеры и постоянное техническое обслуживание.  В зависимости от климата, в котором предстоит работать трубопроводу, применяют сальниковые компенсаторы, изготовленные из разных сталей и сплавов сталей:

    —  Сталь Ст3сп
    —  Сталь Ст20
    —  Сталь 09Г2С

    Произведенные из стали сальниковые компенсаторы магистральных трубопроводов используют при прокладке магистралей, где среда (вода, пар) перегоняется под давлением от 1,6 до 2,5 МПа (25 кгс/см2) при температуре до 300°С.  При проектировании отопления или водоснабжения необходимо учитывать, что изделия могут быть установлены в районах строительства, где температура окружающей среды не опускается ниже -40°С.

    Предполагается использование сальникового компенсатора при канальной прокладке на низких опорах (при диаметре трубы от 300 мм) и бесканальной прокладке (при диаметре трубы от 100 мм). В последнем случае компенсаторы прокладываются в каналах из сборных железобетонных элементов.

     

     

    В компании Империя Вы можете заказать расчет стоимости изготовления сальникового компенсатора в комплекте с сальниковой набивкой и резиновым уплотнением. Для этого необходимо направить запрос на электронную почту pk-imperia@mail.ru или связаться со специалистами отдела продаж другим способом, по координатам на странице Контакты.

    В запросе следует указывать маркировку сальникового компенсатора согласно серий 5.903-13 вып.4, 4.903-10 вып.7 или указать известные Вам характеристики (диаметр, компенсирующая способность, рабочее давление).

     

     

    С другими типами компенсирующих устройств Вы можете ознакомиться на странице Компенсаторы и компенсационные устройства.

     

  • Метки , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Трубопроводы в котельной

    Трубопроводами называется система, которая состоит из труб и соединяющих деталей (арматуры, опор трубопровода и подвесок, компенсаторов, тепловой изоляции) и предназначена для транспортировки, распределения и отвода жидкостей, паров и газов.

    В зависимости от вида транспортной среды трубопроводы под-разделяются на:

    • водопроводы — служат для подачи воды: питательной, химически очищенной и технической и конденсата.
    • паропроводы — предназначены для подачи и распределения насыщенного и перегретого пара;
    • мазуто- и газопроводы — обеспечивают подачу жидкого и газообразного топлива;
    • воздухопроводы — подают воздух в топку котла. В котельных водопроводы и паропроводы подразделяются на главные (основные), работающие под давлением, которые подлежат котлонадзору, и вспомогательные трубопроводы. К основным трубопроводам относятся:
    • питательные трубопроводы, которые соединяют питательные насосы с паровыми котлами и предназначены для подачи питатель¬ной воды в котлы;
    • паропроводы насыщенного и перегретого пара, соединяющие паровые котлы со сборным коллектором, к которому подключены потребители.

    К вспомогательным трубопроводам относятся служебные трубопроводы (обдувочные, подающие пар на форсунки, и выхлопные), а также трубопроводы продувочные, спускные и дренажные.

    Трубопроводы, которые транспортируют пар с давлением выше 0,7 кгс/см2 и горячую воду с температурой выше 115 °С, изготовляются, монтируются и Эксплуатируются по «Правилам устройства и безопасной эксплуатации трубопроводов пара и горячей воды». Согласно Правилам, все трубопроводы подразделяются на четыре категории:

    1 категория — относится к высоким параметрам;
    II категория — пар Р =;’39 кгс/см2; tM = 350-470 °С; горячая вода из t в> 120 °С;
    III категория — парР = 22 кгс/см2 и tne = 250-350 °С; горячая вода и насыщенный пар Р = 16—39 кгс/см2 и t = 115 °С;
    IV категория — пар и горячая водаР= 1-16 кгс/см2и t = 120— 250 °С.

    В котельных малой и средней мощности используются трубопроводы II—IV категорий.
    Для изготовления трубопроводов и их элементов в зависимости от рабочих параметров среды применяются электосварные трубы из углеродистой стали различных марок. Для изготовления поверхностей нагрева котлов служат стальные бесшовные трубы.

    Основные требования к трубопроводам — надежность их работы, минимальные потери давления и потери тепла в окружающую среду.
    Элементы трубопроводов соединяются сваркой, присоединение трубопроводов к оборудованию и арматуре допускается сваркой или на фланцах.

    Питательные трубопроводы предназначены для питания паровых котлов водой. В паровых котлах паропроизводительностью до 4 т/ч допускается один трубопровод, а при большей производительности — два. Пропускная способность каждого питательного трубопровода должна обеспечить номинальную производительность котлов с учетом потери на продувку.
    Во избежание ожогов обслуживающего персонала и для уменьшения потерь тепла на горячие трубопроводы наносится тепловая изоляция. Изолированный трубопровод покрывают сверху мешковиной или алюминиевой фольгой.

    Во избежание гидравлических ударов в паропроводах предусматриваются дренажные линии и трубопроводы прокладываются с наклоном не менее 0,001 в сторону движения пара.
    При подаче пара или горячей воды в трубопроводах происходит температурное удлинение. Удлинение трубопроводов из углеродистых сталей при нагревании на 100 °С составляет около 1,2 мм/м. В зависимости от температуры среды в стенках трубопроводов возникает напряжение, которое может привести к их разрыву и повреждению. Поэтому для компенсации температурных удлинений и избежания разрывов применяются компенсаторы (рис. 55).

    Рис.55. Компенсаторы, обеспечивающие удлинение трубопровода

    Рис. 55. Компенсаторы, обеспечивающие удлинения трубопроводов:
    а — сальник (для низкого давления); б — линзовые (для низкого давления); в — П-образные (на любое давление).

    Наибольшее распространение получили гнутые П-образные компенсаторы. В стесненных условиях на трубопроводах низкого давления (тепловые сети) используются сальниковые компенсаторы.
    Для крепления трубопроводов применяются опоры или подвески. Трубопроводы — неподвижные и подвижные (скользящие, качающиеся, роликовые).

    Для распознания, какая среда проходит по трубопроводам, их окрашивают в различные цвета. Пар перегретый — красный; насыщенный — красный с желтыми кольцами; вода питательная — зеленый; газопровод- желтый, с красными кольцами и нанесением стрелки, указывающей направление движения газа; воздух — синий и пр.

  • Метки , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Защита трубопроводов от коррозии в тепловых камерах

    Защита трубопроводов от коррозии в тепловых камерах

    Журнал «Новости теплоснабжения», № 10 (14) октябрь 2001, С. 49 – 54, www.ntsn.ru
    К.т.н. В.Б. Косачев, А.П. Гулидов, НПК «Вектор»
    Почти 70% всех дефектов тепловых сетей, вызванных коррозионными процессами, приходится на тепловые камеры.

    О чем знает и не знает статистика

    Перефразируя на современный лад строки романа «Двенадцать стульев», написанного в годы начала строительства систем централизованного теплоснабжения, можно сказать: «Статистика знает все. От статистики не скроешься никуда. Она имеет точные сведения о том, что почти 70% всех дефектов тепловых сетей, вызванных коррозионными процессами, приходится на тепловые камеры (1). Не знает статистика только одного – сколько в стране тепловых камер». Действительно, определить точное количество тепловых камер затруднительно, однако, учитывая, что расстояние между ними на трубопроводе не превышает 150-200 метров, а общая протяженность тепловых сетей по стране составляет более 200 тысяч километров (2), можно получить приближенную цифру – один миллион камер. Приняв среднюю длину камеры за четыре метра, несложно посчитать, что в тепловых камерах расположено около 4000 километров трубопроводов.

    Акцентируя внимание на существующей проблеме защиты трубопроводов от коррозии, именно в тепловых камерах, отметим то, что по данным Мосэнерго повреждаемость трубопроводов в тепловых камерах в десять раз выше, чем на линейной части трубопроводов.

    Тепловая камера как она есть

    Для того чтобы установить причины интенсивной коррозии трубопроводов в тепловых камерах и определить эффективные способы их защиты, необходимо конкретизировать, что понимается под «тепловой камерой». (В нормативной и справочной литературе по теплоснабжению этот термин встречается неоднократно, однако, как ни странно, четкой его формулировки не приводится). Попытаемся материализовать термин «тепловая камера» в виде неотъемлемого элемента системы теплоснабжения, дав ему максимально емкое определение.

    «Тепловая камера – заглубленное сооружение, предназначенное для размещения и обслуживания узлов теплопроводов, представляющих места с ответвлениями, секционными задвижками, дренажными устройствами, компенсаторами, неподвижными опорами и опусками труб. Выполняется наиболее часто из монолитного бетона или железобетона и железобетонных конструкций».

    Из определения следует, что надежность эксплуатации тепловых сетей в целом, во многом определяется возможностью безаварийного функционирования участков трубопроводов, находящихся в тепловых камерах. Из того же определения следует, что в тепловой камере более вероятно возникновение таких условий эксплуатации трубопровода, которые приводят к возрастанию скорости коррозионных процессов металла труб, опор, компенсаторов и арматуры.

    Так, из-за значительных габаритов узлов теплопроводов, размещаемых в тепловых камерах, камеры имеют большие размеры. Ввиду наличия градиента между температурами поверхностей узлов трубопровода и температурами стенок и перекрытий камеры, возникает интенсивная конвекция воздуха, который в тепловых камерах всегда имеет повышенную влажность. Повышенная влажность воздуха объясняется наличием многих, характерных для тепловых камер, неблагоприятных эксплуатационных факторов, к основным из которых следует отнести: протечки поверхностных вод через негерметично закрывающиеся крышки люков, утечки теплоносителя через сальниковые уплотнения задвижек и компенсаторов, разрушенные перекрытия каналов (фото 1). При конвекции воздуха на перекрытиях тепловых камер, прилегающих частях канала, а также на плоскостях щитовых опор, имеющих температуру ниже точки росы, происходит конденсация влаги (3) с последующим образованием капели (фото 2), в результате чего происходит сосредоточенное в отдельных местах увлажнение теплоизоляционных конструкций (фото 3), вызывающее коррозию металла труб.

    ремонт трубопровода

    ремонт трубопровода

    ремонт трубопровода

    Также необходимо отметить, что повышенная влажность воздуха представляет опасность не только для трубопроводов, но и для других конструкций тепловых камер. Из данного ранее определения очевидно, что обслуживание узлов теплопроводов требует периодического присутствия в тепловых камерах рабочего персонала, для чего в тепловых камерах устанавливаются лестницы и трапы. Постоянная конденсация влаги на стальных лестницах, предназначенных для спуска в камеры, приводит к протеканию процесса «мокрой» коррозии металла лестниц (фото 4) и разрушению в первую очередь их крепежных конструкций (арматуры, заделанной в бетон) на границе раздела «бетон-воздух». Постоянное увлажнение теплоизоляционных конструкций приводит в конечном итоге к их разрушению, возрастанию температуры воздуха в тепловых камерах и дальнейшему увеличению количества конденсата (капели с перекрытий). Полуразрушенные лестницы и неблагоприятный температурный режим затрудняют доступ в тепловые камеры, возникает опасность получения рабочим персоналом производственных травм. Так появляются «брошенные» камеры, в которых узлы трубопроводов практически не обслуживаются, контроль за коррозионными процессами не осуществляется, и камера через некоторое время из разряда «брошенных» переходит в разряд «аварийных».

    ремонт трубопровода

    Изоляционные конструкции в теории и реальности

    Однако высокую повреждаемость трубопроводов и их узлов в тепловых камерах нельзя объяснять только сложными условиями эксплуатации. Основная причина их неудовлетворительного состояния заключается в отсутствии необходимых надежных изоляционных конструкций, что подтверждается результатами обследования, проведенного в 350 камерах тепловых сетей г. Москвы. При обследовании ни в одной из тепловых камер не обнаружено классической (в теории) изоляционной конструкции трубопровода, состоящей из четырех функциональных слоев: антикоррозионного покрытия, теплоизоляционного слоя с армирующими и крепежными деталями, гидроизоляционного слоя и покровного защитно-механического слоя.

    Наиболее часто (в 80% обследованных камер) изоляционная конструкция состояла из слоя минеральной ваты и асбоцементной штукатурки по металлической сетке. Как показывает практика, слой асбоцементной штукатурки, предназначенный только для защиты теплоизоляционных конструкций от механических повреждений, при капели с перекрытий и протечках не препятствует проникновению влаги к армирующей металлической сетке, теплоизоляционным конструкциям и их крепежным деталям. Одновременно протекающая под воздействием капели во влажной атмосфере коррозия крепежных деталей теплоизоляции и каркаса штукатурки – металлической сетки, приводит к обрушению штукатурки совместно с тепловой изоляцией (фото 5).
    ремонт трубопровода

    Имеющиеся в 20% обследованных камер изоляционные конструкции состояли из трех функциональных слоев: тепловой изоляции, антикоррозионного или гидроизоляционного покрытия и асбоцементной штукатурки. Антикоррозионные или гидроизоляционные покрытия, предназначенные для защиты наружной поверхности труб и теплоизоляционных конструкций от коррозии и увлажнения, выполненные в подавляющем большинстве камер с применением традиционных материалов (битумные лаки, мастики и рулонные материалы), через 2-3 года эксплуатации характеризовались: антикоррозионные – малой толщиной, высокой дефектностью и низкой прочностью сцепления с металлом труб (фото 6); гидроизоляционные – отсутствием эластичности (произошло охрупчивание покрытий с образованием трещин) или низкой термостойкостью (фото 7). По результатам обследования можно заключить, что покрытия на битумной основе быстро утрачивают свои защитные функции и не обеспечивают необходимой степени защиты металлических и теплоизоляционных конструкций теплопровода, находящихся в тепловых камерах.

    Рекомендуемые на данный момент для защиты теплопроводов эмали и шпатлевки (эпоксидные, органосиликатные и кремнийорганические) в тепловых камерах применяются достаточно редко. Это объясняется тем, что данные материалы обеспечивают долговременную защиту лишь при соответствующей (дробеструйной и пескоструйной) подготовке защищаемых поверхностей, что возможно лишь на специально оборудованных участках. При производстве антикоррозионных покрытий в тепловых камерах выполнение пескоструйных и дробеструйных работ по ряду причин невозможно, из-за чего достижение долговременного защитного эффекта от применения вышеуказанных материалов представляется маловероятным.
    ремонт трубопровода

    Низкая эффективность защиты трубопроводов упомянутыми выше антикоррозионными и гидроизоляционными материалами подтверждается и тем, что несмотря на периодическое восстановление в тепловых камерах изоляционных конструкций при текущих ремонтах (с выполнением антикоррозионной защиты или гидроизоляции), добиться значительного продления срока эксплуатации трубопроводов в отремонтированных «аварийных» тепловых камерах без капитального ремонта (с заменой труб, узлов трубопровода и перекрытий) не удается.

    В связи с этим, одним из основных направлений по обеспечению эффективной защиты теплопроводов в камерах (и снижению их удельной повреждаемости в целом), является разработка антикоррозионных и гидроизоляционных материалов, технологические характеристики которых обеспечивают возможность производства долговечных покрытий в трассовых условиях.

    Вариации на заданную тему

    Отметим, что материалы, применяемые для антикоррозионной защиты металлических конструкций, должны иметь высокую прочность сцепления с прокорродировавшими или ранее окрашенными поверхностями, пескоструйная обработка которых перед нанесением покрытия невозможна или нецелесообразна по экономическим соображениям. Получаемое при этом покрытие должно продолжительное время сохранять свои защитные свойства и обеспечивать безаварийную эксплуатацию теплопровода. При разработке гидроизоляционных составов следует учитывать то, что получаемые покрытия должны обладать повышенной механической прочностью, быть термостойкими и эластичными. Для повышения эффективности применения разрабатываемых антикоррозионных и гидроизоляционных составов следует предусмотреть возможность их нанесения на действующие трубопроводы в тепловых камерах при различных неблагоприятных факторах (повышенные влажность, температура, стесненные условия).

    В журнале «Новости теплоснабжения» № 4/2000 г. была опубликована статья «Защита трубопроводов полимерными покрытиями», содержащая общую информацию о разработанном комплекте антикоррозионных материалов на полиуретановой основе, опытно-промышленное внедрение которого было проведено на действующих участках трубопроводов, находящихся в тепловых камерах. Положительные результаты применения данных материалов позволяют более подробно ознакомить читателей с технологией производства работ, направленных на восстановление первоначальных эксплуатационных качеств теплопроводов. В зависимости от характера дефектов изоляционной конструкции имеется возможность осуществления нескольких вариантов защиты, приведенных ниже.

    Вариант 1. В тепловых камерах с полностью разрушенной изоляционной конструкцией целесообразно выполнять полный комплекс работ, включающий: нанесение антикоррозионного покрытия на поверхность трубопровода, теплоизоляцию трубопровода с последующим формированием на поверхности тепловой изоляции водонепроницаемого покрытия (гидроизоляция).

    Антикоррозионная защита и гидроизоляция трубопроводов и их узлов выполняется в следующей последовательности. На первом этапе щетками и скребками удаляется слой продуктов коррозии, имеющий низкую прочность сцепления с поверхностью металла. На прокорродированную поверхность металла, очищенную от пластовой ржавчины, наносится многофункциональный грунтовочный состав, позволяющий одновременно пассивировать поверхность и сформировать прочно сцепленный с ней адгезионный подслой для последующего нанесения защитного покрытия (фото 8). Далее на загрунтованную поверхность наносится защитное покрытие, совместимое по физико-механическим характеристикам с грунтом, что исключает возможность его отслаивания при температурных колебаниях трубопровода (термоциклирование) и обеспечивает длительную работоспособность защитной системы «грунт-покрытие» (фото 9).

    ремонт трубопровода
    ремонт трубопровода

    Вторым этапом работ является создание на трубопроводе теплогидроизоляционной конструкции, технологичность и экономичность формирования которой достигается за счет применения в качестве тепловой изоляции широко распространенных минераловатных матов, обтягиваемых стеклотканью с последующей пропиткой стеклоткани гидроизоляционной мастикой, являющейся модификацией состава, применяемого для производства защитного покрытия. Формируемый при этом армированный слой одновременно выполняет функции защитного кожуха и водонепроницаемого для капели покрытия (фото 10).
    ремонт трубопровода

    Вариант 2. В тепловых камерах с частично разрушенной теплоизоляционной конструкцией (фото 3) рекомендуется удалить участки поврежденной изоляции по радиусу и оценить состояние металла под ними. При наличии коррозионных повреждений металла следует выполнять локальный ремонт в соответствии с вариантом 1. В случае отсутствия коррозионных повреждений выполняются только работы второго этапа варианта 1.

    Вариант 3. В «предаварийных» тепловых камерах, с только что начавшимся процессом разрушения изоляционной конструкции (появление трещин в штукатурке либо ее интенсивное увлажнение в местах протечек с вымыванием асбоцементной смеси и коррозией металлической сетки), рекомендуется также осуществлять пропитку штукатурки вышеупомянутой гидроизоляционной мастикой с целью гидрофобизации ее поверхности и заполнения (залечивания) образовавшихся трещин. Лестницы, трапы и прочие вспомогательные конструкции, находящиеся в тепловой камере, защищают по аналогии с трубопроводом, т. е. путем нанесения грунтовочного и покровного составов.

    Грунтовочный, покровный и гидроизоляционный составы готовятся на месте применения, в стесненных условиях тепловых камер могут наноситься вручную кистью, причем отверждение материалов происходит независимо от температурно-влажностного режима тепловых камер.

    Внедрение: итоги и выводы

    Для подведения итогов работы по внедрению новой технологии защиты трубопроводов в тепловых камерах, авторами были собраны отзывы от организаций, осуществляющих эксплуатацию, ремонт и монтаж тепловых сетей. Информация, содержащаяся в отзывах, позволяет сделать некоторые выводы, которые могут быть учтены при проектировании, строительстве и ремонте тепловых камер:

    1. Разработка комплекта антикоррозионных и гидроизоляционных материалов для защиты теплопроводов осуществлялась на основе экспертных оценок, выполненных с учетом динамики патентования материалов для защиты от коррозии и статистической обработки результатов комплексного обследования условий эксплуатации и состояния изоляционных конструкций в тепловых камерах.

    2. Первоначальное выполнение антикоррозионных и гидроизоляционных работ в тепловых камерах осуществлялось сотрудниками организации-разработчика с обязательным периодическим освидетельствованием состояния изоляционных конструкций совместно с представителями организаций-владельцев тепловых камер.

    3. На основании положительных отзывов, полученных от организаций-владельцев (в процессе четырехлетнего испытательного цикла покрытий в условиях тепловых камер действующих тепловых сетей) и результатов параллельно проводимых стендовых испытаний, были определены оптимальные варианты защиты и разработаны подробные технологические инструкции, регламентирующие порядок выполнения работ по антикоррозионной и гидроизоляционной защите в тепловых камерах.

    4. Разработанные инструкции и рекомендации позволили осуществить передачу технологий защиты трубопроводов в тепловых камерах персоналу эксплуатирующих, ремонтных и монтажных организаций. Проведенное обследование показало, что в настоящий момент все изоляционные конструкции, самостоятельно выполненные персоналом организаций с применением разработанных материалов, обеспечивают надежную защиту трубопроводов и их конструктивных элементов.

    5. Для освоения технологий применения разработанного комплекта материалов в тепловых камерах не требуется организация производственных участков, оснащенных специальным оборудованием, что означает возможность снижения удельной повреждаемости теплопроводов без капитальных вложений.

    Таким образом, антикоррозионная защита и гидроизоляция трубопроводов в тепловых камерах с применением разработанного комплекта материалов на полиуретановой основе позволяют: обеспечить высокую надежность функционирования трубопроводов, увеличить их межремонтный срок службы и, при минимальных затратах, снизить удельную повреждаемость теплопроводов в целом.

    Литература

    1. Л.В.Родичев. Статистический анализ процесса коррозионного старения теплопроводов. – Строительство трубопроводов. – 1994, № 9.

    2. Техническое обоснование состояния и перспективы совершенствования систем теплопроводов на основе современных антикоррозионных и теплоизоляционных покрытий. Отчет АО ВНИИСТ, Москва, 1995 г.

    3. И.В. Стрижевский, М.А.Сурис. Защита подземных теплопроводов от коррозии. Энергоатомиздат, Москва, 1983 г.

  • Метки , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Компенсаторы, зачем они нужны ?

    Компенсаторы, зачем они нужны ?

    Утро. Еле перебирая ногами, мы плетемся в ванную комнату, включаем кран! В голове еще продолжает развиваться сладкий ночной сон. А тут, холодный поток стремительно возвращает нас на землю. Смотрим в окно, а там: перекопанный двор, кричащие соседи – прорвало трубы. Согласитесь, такая ситуация знакома всем без исключения. Но, наверняка, в большинстве своем, люди даже не задумывались о причинах. Да, да, о причинах возникновения аварии. Именно об этом мы поговорим в данной статье.

    Основной причиной такой аварии является усталость труб. Сильно напряжение, которое возникает в трубопроводе потому, что во время передачи теплоносителя, то есть горячей воды или пара температуры до 150 градусов, случается перегрев труб. Из законов физики, нам известно, что это ведет к их удлинению и расширению. Трубопроводы прокладываются между домами. И, естественно, удлиняться им нет никакой возможности. И, по тем же законам, в трубах появляются механические поражения, которые могут достигнуть значительной величины.
    Для того, чтобы воздействие высоких температур не приводили к повреждениям, в трубопровод монтируют специальные компенсаторы.

    Компенсаторы существуют сальниковые, линзовые, резиновые, тканевые, антивибрационные и сильфонные. Сальниковые компенсаторы производятся из, так называемых, патрубков, то есть отрезков труб. Патрубки имеют разный диаметр и вставляются друг в друга очень концентрировано. Для герметизации пространства между патрубками применяют сальниковое уплотнение. Такой компенсатор способен компенсировать практически любое осевое перемещение. Для трубопровода горячей воды, имеющего давление до 16 ати, в основном используют односторонние и двусторонние сальниковые компенсаторы.
    Линзовые компенсаторы производят посредством штамповки, так называемых, полулинз. Процесс изготовления таких компенсаторов очень трудоемкий. А то, что они имеют большое количество швов от сварки, сильно понижает их надежность. И сама способность компенсации у них довольна низкая. Линзовые компенсаторы разделяются на следующие виды: компенсатор однолинзовый, компенсатор двухлинзовый, компенсатор трехлинзовый и компенсатор четырехлинзовый.
    Резиновый компенсатор очень эффективно увеличивают срок хорошей работы трубопроводов. Кроме того, даже имеют отличные звукоизоляционные свойства. Представляет собой что-то типа кожуха, защищающего внутренние составляющие. Изготавливается из синтетической или натуральной резины, в зависимости от трубопровода. Разделяются резиновые компенсаторы на: универсальный компенсатор (для температурных расширений, то есть сжатия, удлинения), сдвиговый компенсатор (для сдвигов), угловой компенсатор (для перемещений угловых).
    Тканевые компенсаторы применяются для пыле-, газо-воздуховодов с низким давлением и хорошим перемещением. Такой вид компенсаторов может ловить даже самые небольшие движения трубопроводов из-за плохой жесткости ткани.
    Резиновые, гибкие вибровставки применяются для устранения передачи вибраций в трубопроводах. Антивибрационный компенсатор используют для понижения шума и вибрации. Также против расширения и удлинения труб. Может до какого-то уровня снизить гидравлические удары, снижает развитие электролитической коррозии.
    Сильфонный компенсатор (сильфон – это тонкая, гофрированныя, эластичная оболочка из металла. Может растягиваться, гнуться или сдвигаться из-за изменения температуры) – это металлический компенсатор. Имеет совсем небольшой размер и его установка возможна на любом участке трубопровода. Для него зачастую не нужно строить специальные камеры и как-то особенно обслуживать на протяжении всего срока службы. Из-за того, что данный вид компенсаторов производится из высококачественной стали, он может отлично работать при любых условиях, даже самых жестких. Исходя из условий используют разные виды сильфонных компенсаторов. Например, по конструкции сильфонные компенсаторы делятся на: компенсаторы КСО, компенсаторы СКО, компенсаторы ОПН. По типу сильфона: многослойные и однослойные. По нагрузке: осевые (для сжатия и растяжения), угловые (для угловой деформации), сдвиговые (при сдвигах). По методу соединения с трубой: фланцевые и под приварку. В компании
    » ПК Империя» вы можете разместить заказ на любые виды компенсаторов по самым конкурентным ценам. Мы гарантируем индивидуальный подход к каждому клиенту и своевременность доставки компенсаторов в любую точку России.

  • Метки , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Сальниковые компенсаторы, двухсторонние

    САЛЬНИКОВЫЕ КОМПЕНСАТОРЫ-ДВУХСТОРОННИЕ

    Компенсатор сальниковый двусторонний
    Компенсаторы сальниковые предназначены для компенсации тепловых расширений трубопроводов паровых и водяных тепловых сетей с параметрами воды и пара Рy до 25 кгс/см2 при температуре воды до 200°С и пара до 300°С, при этом односторонние сальниковые компенсаторы — для условных проходов от Ду 100 до Ду 1400мм, а двухсторонние сальниковые компенсаторы – от Ду 100 до Ду 800мм.
    Компенсирующая способность сальниковых компенсаторов изменяется в зависимости от условного прохода компенсатора.
    Преимуществом сальниковых компенсаторов является их большая компенсирующая способность по сравнению с остальными типами компенсаторов.

    При установке компенсатора на трубопроводе с компенсирующей способностью меньшей чем указано в таблице, установочные размеры могут быть уменьшены.
    В массу включена масса наплавленного металла сварных швов.

  • Метки , , ,
    Опубликовано в: Компенсаторы и компенсационные устройства | Comments Closed

Обратный звонок

Заполните обязательные поля, отмеченные звездочкой!





Нажимая на кнопку Отправить, Вы даете согласие на обработку персональных данных и принимаете условия «Пользовательского соглашения», в том числе п.3 «Политика конфиденциальности».

icq: 645-946-644
  • 27.03.2020
  • Изменение режима работы в период с 28.03.2020 по 05.04.2020г.

  • В целях соблюдения указа Президента РФ об объявлении не рабочей недели в период с 28 марта 2020г. по 5 апреля в связи с ситуацией по распространению новой коронавирусной инфекции COVID-19, сообщаем, что вынуждены перейти на удаленную работу.

  • Подробнее
  • 04.04.2018
  • Отгрузка уровнемера УСК-ТЭ-100

  • Промышленная группа Империя произвела отгрузку скважинного уровнемера модели УСК-ТЭ-100 (диапазон измерений от 0 до 100 метров) в Нижегородскую область. Уровнемер УСК-ТЭ-100 и другие скважинные уровнемеры в период с 01.03.2018 г. по 09.05.2018 г., предлагаются со скидкой -10% от стандартной стоимости прайс-листа. Успевайте сделать заказ!

  • Подробнее
  • 12.03.2018
  • Воздухосборник проточный А1И: снижение цен

  • Проточный воздухосборник А1И является важным элементом системы отопления, необходимым для удаления воздуха из теплоносителя. Вы можете приобрести воздухосборники проточные серии 5.903-2 и 5.903-20 по выгодной цене от 3350 рублей.

  • Подробнее

Измерение уровня подземных вод как основа экологического мониторинга

В сфере гидрогеологии для произведения экологического мониторинга прежде всего необходимо измерить уровень подземных вод. Незаменимым помощником в осуществлении этого является скважинный уровнемер. Уровнемер скважинный представляет собой трос необходимой длины с метками, намотанный на катушку.

далее

Установка абонентских грязевиков системы отопления: необходимость или излишество

Абонентский грязевик применяется для очистки теплоносителя от посторонних частиц грязи, ржавчины и прочих примесей. Нельзя недооценивать, важность применения грязевиков в системах отопления. Их значимость доказала свою эффективность в сложных системах, имеющих в составе большое количество регулирующей арматуры.

далее

Уровнемеры скважинные из наличия со склада в Екатеринбурге

Прмышленная группа «Империя» является поставщиком гидрогеологического оборудования: уровнемеры скважинные, рулетки гидрогеологические, термометры. Продукция реализуется из наличия со склада в Екатеринбурге. Вы также можете заказать изготовление партии в срок от 7 до 15 дней (срок зависит от количества).

далее
center