Сделать стартовой |  Добавить в избранное  
Главная Написать письмо Карта сайта
  • Водоуказательные приборы

    В котельных для определения уровня воды используются водоуказательные приборы с круглым и плоским стеклом, сниженные указатели уровня и водопробные краны.
    Работа водоуказательных приборов основана на законе сообщающихся сосудов: вода в сообщающихся сосудах устанавливается на одном уровне независимо от формы сосудов.
    Водоуказательный прибор является основным прибором для определения уровня воды в паровых котлах, подогревателях и теплообменниках. На каждом котле должно быть не менее двух водоуказательных приборов. В котлах паропроизводительностью менее 0,7 т/ч возможна замена одного из них двумя пробными кранами, которые размещаются на низшем и высшем допустимых уровнях воды в котле.

    Водоуказательный прибор (рис. 49) состоит из круглого или плоского стекла и кранов (парового, водяного и продувочного).

    Рис. 49. Водоуказательные приборы

    Рис. 49. Водоуказательные приборы:
    а — плоское водомерное стекло; б — водопробный кран: 1 — корпус;
    2 — отверстие для очистки; 3 — рукоятка; 4 — пробка крана; 5 — проходное отверстие; в — сниженные водоуказатели: 1, 10, 14-сосуды, 2-поплавок;
    3 — трос; 4, 8, 9 — соединительные трубки; 5 — клапан; 6 — водомерное стекло; 7-стержень; 11 — переливная трубка; 12 — грязевик; 13 — водомерное стекло

    Водоуказательные приборы с круглым стеклом устанавливаются на паровых котлах и баках с давлением до 0,7 кгс/см2. Высота стекла в водоуказательном приборе может быть от 200 до 1 500 мм, диаметр — 8-20 мм, толщина стекла 2,5-3,5 мм. Стеклянные трубки устанавливаются в краны и уплотняются с помощью набивки из колец.
    Водоуказательный прибор с плоским стеклом (рис. 49, а) состоит из металлической рамки, в гнездо которой вставляется на тонкой паронитовой прокладке плоское стекло, плотно прижатое к рамке крышкой с болтами.
    Плоское стекло может быть гладким или рифленым. Рифленое стекло «Клингер» (рис. 50) с внутренней стороны имеет вертикальные призматические канавки, а с внешней стороны отполировано. В таком стекле вода кажется темной, а пар светлым. Рифленое стекло выпускается с 1-го по 9-й номер длиной 115- 340 мм, а гладкое — шести номеров — 140-340 мм.
    В рамку сверху и снизу вкручиваются штуцеры 2, которыми рамка устанавливается в паровой и водяной краны. Для уплотнения в кольцевой зазор закладывают кольца из асбестового шнура.
    Если при работе парового котла краны водоуказательного прибора не загрязнены, то уровень воды в нем слегка колеблется.
    При загрязнении водяного крана уровень воды становится неподвижным, а если засорился паровой кран, водоуказательный прибор заполняется водой выше действительного уровня. Продувку проводят каждую смену.

    Рис. 50. Водоуказательный прибор "Клинер"

    Рис. 50. Водоуказательный прибор со стеклом «Клингер»
    1 — паровой кран; 2- штуцер; 3, 5, 13 — болты; 4 — крышка; 6 — продувочный кран;
    7 — водяной кран; 5 — прокладка; 9 — стекло;  6- продувочный кран;
    10 — сальниковая втулка; 11 — сальниковая набивка; 12 — корпус (рамка) стекла ;

    Из рабочего положения (паровой и водяной краны открыты, а продувочный закрыт) закрыть водяной.

    Последовательность продувки такова:

    кран — продувается водоуказательный прибор только паром;
    открыть водяной кран — продувается водоуказательный прибор паром и водой;
    закрыть паровой кран — продувается водоуказательный прибор только водой;
    открыть паровой кран — продувается водоуказательный прибор паром и водой;
    закрыть продувочный кран — вода должна быстро подняться к определенному уровню и слегка колебаться — этот уровень должен быть одинаковым с уровнем второго водоуказательного стекла. При такой последовательности продувки стекло водоуказатльного прибора будет все время горячим — это и обеспечит его целостность.
    Если водоуказательный прибор находится на высоте более 6 м от площадки наблюдения или уровень воды плохо просматривается, допускается установка двух сниженных указателей уровня воды. На них должны быть нанесены низший и высший допустимые уровни воды по водоуказательному прибору, который установлен на этом же котле. В этих случаях допускается установка одного водоуказательного прибора прямого действия.
    Сниженный указатель уровня (см. рис. 47, в) работает по принципу уравновешивания двух столбов воды в соединительных трубках. Цветная тяжелая жидкость, которая находится в них, имеет большую вязкость, чем вода и не смешивается с ней. Это может быть, например, четырехбромистый углерод с хлороформом и бензолом.
    На всех водоуказательных приборах против допустимого низшего уровня воды в котле должен быть установлен неподвижный металлический указатель с надписью «НДУ». Этот указатель должен быть установлен не менее чем на 25 мм выше нижней видимой кромки стекла водоуказательного прибора. Такой же указатель устанавливается ниже на 25 мм верхней видимой кромки стекла с надписью «ВДУ», соответствующей высшему допустимому уровню воды в котле.

  • Метки , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Паяный и разборный теплообменники. Какой выбрать?

    Большая часть российских теплоснабжающих организаций имеют обширный опыт эксплуатации пластинчатых теплообменников, отдавая при выборе предпочтение разборным и указывая обычно две основные причины. Причины в том, что разборные аппараты поддаются механической очистке, и в случае ошибки в расчетах или изменения присоединенной нагрузки количество пластин можно легко изменить на месте. Между тем обе эти причины не являются объективным препятствием для использования паяных теплообменников на отечественном рынке.

    Ведущие теплоснабжающие компании приводят три аргумента, подтверждающие преимущества паянных теплообменников по сравнению с разборными:

    1) длительный срок службы (в среднем 20 лет, при сроке службы разборных теплообменников менее 10лет);

    2) высокая надежность аппарата (вследствие жесткой системы контроля качества, принятой у предприятий-производителей, включающей 100%-й выходной контроль теплообменников давлением до 40 бар), исключающая возможность протечек между пластинами;

    3) более высокий коэффициент теплопередачи.

    Следует отметить, что эти положительные моменты пока касаются лишь импортного оборудования; российские паяные теплообменники вышли на рынок не так давно, и, по мнению отдельных специалистов, нашим производителям еще предстоит доработать их качество.

    Также следует отметить, что область использования паяных теплообменников имеет определенные ограничения. Таким ограничением является верхний предел мощности, который, по мнению специалистов, не должен превосходить 5 МВт, хотя некоторые производители называют и большие значения. Таким образом, становится понятным широкое распространение паяных теплообменников в Северной Европе, где используется двухтрубная система с ИТП сравнительно малой мощности в каждом доме.

    От себя добавим еще две причины, которые очень актуальны для российского использования. Это: устойчивость к длительным высокотемпературным нагрузкам (при температуре в подающем трубопроводе >120°С срок службы прокладок в разборном теплообменнике существенно
    сокращается); высокая механическая прочность, позволяющая выдержать гидравлические удары,
    выводящие из строя разборные теплообменники.

    Однако не только эти причины должны определять выбор в пользу одного или другого типа
    теплообменника. Сегодня на российском рынке основным критерием выбора остается стоимость
    оборудования и его монтажа. В таблице ниже мы не стали приводить конкретные цены, а лишь
    сравнили стоимость паяных и разборных теплообменников, принимая стоимость паяного в каждом
    случае за 100%. Результаты расчета показали: чем меньше теплообменник, тем выгоднее выбирать
    паяный. Просмотрим результаты для шести характерных примеров (табл. 1). Дополнительное
    преимущество – меньший вес и габариты теплообменников, что также отражено в таблице.
    Таким образом, можно считать, что существующие мифы о преимуществах разборных теплообменников перед паяными основаны на плохом знании рынка теплообменного оборудования и низкой культуре эксплуатации. Паяные теплообменники по многим характеристикам, в т. ч. по энергоэффективности, превосходят разборные.

    Табл.1. Сравнение паяных и разборных теплообменников.

    Тип

    Мощность, кВт Потеря напора Коэффициент теплопе­редачи, Вт/м2К Запасповер­хности нагре­ва, % Коли-чество плас­тин Габариты: длина/шири­на/высота Вес: пустой/ заполнен­ный, кг Сопостав- ление цен
    Пер­вичный контур Вто­ричный контур

    Пример 1 отопление

    Паяный 150 8 10 16 47х111х310 3,28/4,02 100%
    Разборный 150 4 5 16 300х180х480 32,6/33,9 191%
    Пример 2 отопление
    Паяный 200 7 16 5573 19 60 154х112х526 15,7/21,1 100%
    Разборный 200 5 15 4690 11 25 595х320х920 142/148 176%
    Пример 3 ГВС
    Паяный 250 9 6 3858 0 80 202х112х526 20,3/27,7 100%
    Разборный 250 7 4 3419 0 34 595х320х920 153/167 162%
    Пример 4 отопление
    Паяный 400 9 25 5947 6,8 60 181х191х618 33,4/47,6 100%
    Разборный 400 8 25 5302 1 43 595х320х920 156/168 115%
    Пример 5 ГВС
    Паяный 500 13 7 4183 7,2 50 238х191х618 42,2/61,3 100%
    Разборный 500 12 6 3827 0 55 795х320х920 165/181 117%
    Пример 6 отопление
    Паяный 500 8 23 5724 10,7 50 238х191х618 42,2/61,3 100%
    Разборный 500 7 21 5313 0 56 795х320х920 174 / 197 119%
    Источник: ТехСовет №10 октябрь/2010г.
  • Метки , , , , , , , , , , , , , , , ,
    Опубликовано в: Статьи | Comments Closed
  • Власти Красноярского края подвели итоги отопительного сезона

    Заместитель председателя правительства Красноярского края М. Кузичев провел рабочее совещание, на котором были подведены предварительные итоги отопительного сезона 2009-2010 гг. Об этом сообщили в пресс-службе краевого правительства. Как отметил вице-премьер, прошедшая зима стала нелегким испытанием для энергетиков и работников коммунальных служб: «Тем не менее, считаю, что этот экзамен мы выдержали. Все системы жизнеобеспечения региона были заранее подготовлены к работе в суровых зимних условиях. Отопительный сезон Красноярский край завершает достойно». По оценке вице-премьера, практически не было вопросов по работе тепловых станций — они работали стабильно. Однако, в периоды особенно тяжелых морозов значительно возрастала нагрузка на передающие сети (исторический максимум потребления электроэнергии — 6570 МВт — был достигнут в декабре 2009 г.). Это влекло за собой многочисленные отключения. В целом они носили локальный характер, устранялись в пределах нормативных сроков, после чего потребителям делался перерасчет оказанных услуг. Хорошо зарекомендовали себя приобретенные (в связи с аварией на Саяно-Шушенской ГЭС) дизель-генераторы для работы в районах, испытывающих дефицит электроэнергии. «Затянувшаяся весна пока не позволяет нам закрыть этот отопительный сезон, — подвел итоги совещания М. Кузичев. — Но мы уже начали подготовку к очередной зиме. Энергетики и коммунальщики проводят ремонты оборудования, в бюджетных учреждениях составляются планы и программы работы в предстоящих зимних условиях».

    17.05.2010 ИА REGNUM

  • Метки , , , ,
    Опубликовано в: Новости | Comments Closed
  • Исследование процессов тепло-и массообмена в поверхностных теплообменниках при глубоком охлаждении влажных продуктов сгорания

    Исследование процессов тепло-и массообмена в поверхностных теплообменниках при глубоком охлаждении влажных продуктов сгорания

    Д.т.н. А.П. Баскаков, д.т.н. В.А. Мунц., к.т.н. Н.Ф. Филипповский, Р.Н. Галимулин, аспирант, И. С. Пальчиков, аспирант, Уральский Государственный Технический университет — УПИ, кафедра ПТЭ

    Увеличение стоимости газообразного топлива и лимитирование газоснабжающими организациями объемов его потребления делает выгодным более глубокое охлаждение продуктов сгорания в отопительных и энергетических котлах. Конденсация водяных паров, содержащихся в уходящих газах, на охлаждающих поверхностях интенсифицирует теплообмен, увеличивает теплосъем с поверхностей нагрева и при определенных параметрах охлаждающей среды позволяет осушить продукты сгорания, исключив выпадение росы на внутренних поверхностях газоходов и дымовой трубы.

    В настоящее время газы выбрасываются из котлов с температурой 120 — 200 ОС (в некоторых случаях и выше), что приводит к повышенным ненормативным расходам топлива на выработку тепловой энергии. Между тем, при сжигании природного газа экономически целесообразно и технически возможно снижение температуры уходящих газов до 50 — 90 ОС в зависимости от конкретных условий.

    Охладитель дымовых газов из стальных трубок с алюминиевым оребрением

    Для снижения температуры уходящих газов за паровым котлом ШБ-А7 в котельной УГТУ-УПИ, использующей в качестве топлива природный газ, был установлен ребристый теплообменник, с габаритными размерами 1857x1575x180 мм.

    Его поверхность теплообмена (с учетом ребер) составляет 91,8 м2.

    Охладитель установлен в специально смонтированном обводном горизонтальном газоходе между воздухоподогревателем и дымососом. Для регулирования расхода уходящих газов через охладитель за последним установлен шибер. Максимальное количество газов, проходящих через охладитель, составляло 40% от общего количества уходящих из котла газов. Для отвода конденсата из газохода в его нижней части, за охладителем, врезан слив.

    Целью проведения исследований было определение теплотехнических показателей охладителя при различных нагрузках котла, а также отработка практических аспектов глубокого охлаждения продуктов сгорания, прежде всего — предотвращение коррозии и забивания элементов охладителя при длительной эксплуатации.

    Во время экспериментов производились замеры следующих параметров: температуры уходящих газов на входе и выходе из охладителя и перед дымососом (после смешения), расход воды через охладитель, температуры воды на входе и выходе из охладителя, количество водяных паров, сконденсировавшихся из уходящих газов (рис. 1).
    теплообменник

    На рис. 2 представлена полученная экспериментально зависимость коэффициента теплопередачи (отнесенного на оребренную поверхность) от температуры стенки охладителя и скорости дымовых газов (нагрузки котла).

    Для сравнения, при испытаниях аналогичного теплообменного аппарата [1] при средней скорости газов 1,83 м/с и средней температуре стенки ~11 ОС коэффициент теплопередачи составил 48,9 Вт/м2 К при значительно большей скорости воды в трубках (в три раза), что сопоставимо с результатами наших исследований.

    Результаты осмотра охладителя

    После остановки котла 12.05.1999 г. на ремонт визуальный осмотр ребер и внутренних поверхностей (после вскрытия) распределительно-сборных коллекторов и трубок охладителя выявил следующее:

    1. Как на входе газов в охладитель, так и на выходе газов из охладителя алюминий покрылся белым твердым налетом. Центральная часть труб (площадью около 0,25 м2) на входе выглядела как новая. Вероятно, это связано с завихрениями газового потока перед охладителем.

    2. В местах стыка алюминия со стальными трубками следов подтеков и течей не наблюдалось.

    3. На входе горячих газов в охладитель в первом и втором (по ходу газов) рядах труб наблюдались незначительные следы подтеков воды в местах сварки стальных труб с трубной доской. Места подтеков находились в нижней части охладителя (1÷8 ряд трубок), куда подавалась холодная вода.

    4. Внутренняя поверхность распределительно-сборных коллекторов и труб была покрыта железо-окисными отложениями. Сплошные отложения внешне бугристые (1÷5 мм), прочносцепленные с поверхностью металла; нижний слой черный, верхний — коричневый. В составе таких отложений содержание окислов железа обычно достигает 80 ÷ 90 %.

    Химические параметры водопроводной (недеаэрированной) воды, используемой в качестве теплоносителя в охладителе, следующие: общая жесткость ЖО= 1500 мкг-экв/л; общая щелочность ЩО =1,0 мг-экв/л; содержание хлоридов СГ = 11 ÷12 мг-экв/л.

    Для предотвращения быстрого забивания охладителя возможны следующие варианты:

    1. Использование теплопередающих трубок из нержавеющей стали, латуни, меди либо титана.

    2. Применение трубок большего диаметра(хотя бы 0 16 мм вместо использованной нами в теплообменнике первого поколения 12×1,5 мм).

    3. Использование воды лучшего качества, например сетевой.

    Капитальные затраты на реализацию проекта на декабрь 1998 г. составили 70 тыс. руб. Установка теплообменника окупается за 4 мес. эксплуатации за счет получения дополнительной тепловой энергии на нужды отопления.

    Теплофикационный экономайзер

    В 2000 г. вместо описанного был установлен и успешно работает до настоящего времени теплофикационный экономайзер второго поколения. В теплообменнике подогревается обратная сетевая вода. Внутренней коррозии не наблюдалось, так как сетевая вода деаэрируется и обрабатывается антинакипином СК-110. Поскольку температура воды превышает температуру точки росы в продуктах сгорания (55 ОС), конденсации водяных паров из продуктов горения не происходило.

    Охладитель из нержавеющей стали с алюминиевым оребрением на трубках

    В настоящее время спроектирован и готовится к монтажу охладитель третьего поколения — с алюминиевым оребрением на трубках из нержавеющей стали. Такой выбор материалов позволяет охлаждать дымовые газы «сырой» водопроводной водой с температурой значительно ниже температуры точки росы (5-15 ОС) без опасения коррозии внутренних поверхностей нагрева. Конденсат собирается в нижней части газохода в специальный карман и после декарбонизации и деаэрации используется в качестве питательной воды для котлов. Разработанная нами специальная схема включения теплообменника позволяет охладить уходящие газы до 70 ОС, одновременно осушая их (температура точки росы снижается до 30 ОС).

    Установка такого теплообменника позволяет повысить КПД котла до 106 % (по низшей теплоте сгорания) и окупается по расчету за 2 мес. эксплуатации за счет выработки дополнительного тепла.

    Эксперимент по тепло- и массообмену

    Параллельно с экспериментами с охладителем исследовался теплообмен между продуктами сгорания природного газа на выходе из котла ШБ-А7 и поперечно обтекаемой водоохлаждаемой трубкой.

    Целью исследования было нахождение зависимости коэффициента теплоотдачи от глубины переохлаждения стенки трубки ниже температуры точки росы и сравнение расчетных данных с экспериментом. Поскольку разность концентраций водяных паров в объеме и у стенки трубки невелика и теплофизические параметры газа меняются по толщине пограничного слоя несущественно, для оценки интенсивности массообмена допустимо использование аналогии процессов с тепло- и массообмена [2]. Приведенный (с учетом теплоты конденсации водяных паров) коэффициент теплоотдачи увеличивается с уменьшением температуры стенки по мере увеличения количества конденсирующегося на ней пара. При постоянной температуре стенки и концентрации водяных паров в дымовых газах доля конденсационной составляющей в приведенном коэффициенте теплоотдачи не зависит ни от скорости газов, ни от диаметра трубки.

    Среднеквадратичная ошибка эксперимента составила ± 8,25% (рис. 3).
    теплообменник

    Выводы

    1. Коэффициент теплоотдачи от влажных продуктов сгорания природного газа к охлаждающей стенке трубы существенно увеличивается по мере снижения температуры стенки до 30 ОС.

    2. Использование аналогии процессов тепло- и массообмена для расчета суммарного теплового потока дает достаточно надежные результаты, совпадающие с данными экспериментов.

    3. Применение ребристых биметаллических экономайзеров, включаемых в поток по разработанной нами схеме, позволяет эффективно снизить температуру уходящих газов до 70 ОС и ниже с конденсацией большей части содержащихся в продуктах сгорания водяных паров.

    ЛИТЕРАТУРА

    1. Кудинов А.А., Антонов В.А., Алексеев Ю.М. Анализ эффективности применения конденсационного теплоутилизатора за паровым котлом ДЕ-10- 14ГМ // Промышленная энергетика. 1987, № 8. С. 47 — 49.

    2. Тепло- и массообмен. Теплотехнический эксперимент:Справочник/ Под общ. ред. В.А. Григорьева и В.М. Зорина. — М.: Энергоиздат, 1982. 512 с.

    3. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М.: Энергоиздат, 1981.

  • Метки , ,
    Опубликовано в: Статьи | Comments Closed
  • Новое направление в системах очистки теплообменного оборудования от отложений

    Новое направление в системах очистки теплообменного оборудования от отложений
    А.Ф.Молочко, директор, А.В.Трич, заведующий лабораторией, БЕЛТЭИ, Минск

    При прохождении воды в межполюсном пространстве магнитного аппарата в воде образуются зародыши центров кристаллизации, которые вызывают объемную кристаллизацию солей жидкости. В результате вместо накипи образуется тонкодисперсная взвесь, частицы которой, достигнув определенного размера, образуют шлам.

    Анализ существующих способов очистки

    В настоящее время в теплоэнергетике основным теплоносителем является пресная вода, получаемая из природных источников, и содержащая большое количество различных примесей — от растворенных минеральных солей до органических соединений. При работе теплообменного оборудования примеси выделяются в твердую фазу как в виде накипи (отложения непосредственно на поверхности), так и в виде шлама. Отложения вызывают ухудшение теплопередачи, что приводит к снижению эффективности работы оборудования (перерасходу топлива, перегреву металла и т.д.).

    Для предотвращения образования отложений проводят предварительную химическую обработку воды используемой в качестве теплоносителя, но данные мероприятия не обеспечивают 100% защиты от отложений. Поэтому в теплообменном оборудовании постоянно происходит образование различных отложений ухудшающих его работу и требующих периодической очистки.

    Фактически существует два принципиальных метода очистки теплообменного оборудования — физический и химический. Обязательными требованиями для всех применяемых методов является полное удаление отложений из очищаемого оборудования и сохранение целостности его конструкций. Эти требования должны выполняться в условиях безопасности для персонала, в приемлемые сроки, с минимальным воздействием на окружающую среду.

    В настоящее время используются преимущественно химические методы — химические промывки. В частности, практически на всех котельных широкое применение для очистки поверхностей нагрева получил метод кислотной химической очистки ингибированной соляной кислотой с последующим щелочением. Но при этом необходимо учитывать, что соляная кислота хорошо и быстро растворяет только карбонатные отложения. Если в отложениях присутствуют сульфатные и силикатные соли, которые фактически не растворимы соляной кислотой, то для проведения химочистки в соляную кислоту необходимо добавлять фтористые соединения ( NH 4 F , NaF , HF ). Как известно, фтористые соединения токсичны и, следовательно, возникают проблемы со сточными водами.

    Кроме того, образование накипных отложений по периметру труб не равномерно. Обычно с «огневой» стороны их толщина в 2-3 раза больше. Следовательно, при проведении химической очистки кислотой часть поверхности труб очистится раньше и кислота будет реагировать с чистым металлом, подвергая его коррозии. Коррозионные процессы протекают более активно в заклёпочных соединениях (в клёпанных барабанах), вальцованных соединениях, сварных швах и т.д.

    Иногда в экранных трубах конвективного пучка возникают, так называемые, «глухие пробки» из накипи длинною от 200 мм и более. При кислотной очистке наличие таких пробок приводит к необходимости замены труб.

    Необходимо помнить, что проведение химических очисток теплоэнергетического оборудования требует строгого соблюдения техники безопасности, т.к. все применяемые реагенты в той или иной степени ядовиты, при работе могут вызвать химические ожоги, а при подогреве раствора — дополнительные тепловые. Необходимо также помнить, что при взаимодействии моющих растворов с отложениями и металлом оборудования выделяется водород, который в смеси с кислородом воздуха может привести к образованию легковоспламеняющейся и взрывоопасной «гремучей» смеси.

    Около 30 лет назад был предложен способ борьбы с отложениями с помощью комплексонов, содержащих фосфоновые группировки — РО(ОН)2 и коплексонатов, производных от комплексонов. Данный химически метод основан на образовании прочных комплексных соединений с кальцием, магнием, железом и некоторыми другими соединениями в результате постоянного ввода в теплоноситель комплексона. При нагревании до определенной температуры эти комплексы остаются в растворенном состоянии и поэтому соединения кальция и магния не откладываются на поверхностях нагрева в виде накипи. Но необходимо учитывать, что в жесткой воде при температуре 120-125 °С комплексы распадаются.

    Таким образом, несмотря на столь широкое распространение методов химических очисток теплообменных поверхностей, нельзя не отметить присущих им серьезных недостатков:

    * необходимость останова оборудования, сбора специальных промывочных схем с трубопроводами, арматурой, насосами и емкостями;

    * расход дорогостоящих реагентов и воды для собственно промывок и последующих отмывок поверхностей нагрева;

    * невозможность эффективной очистки оборудования из-за неравномерного распределения накипи по поверхности нагрева, как следствие — неполное удаление накипи;

    * необходимость пассивации металлических поверхностей после химочистки;

    * износ металла вследствие коррозионных процессов после трех-четырех химочисток;

    * образование большого объема сточных вод, зачастую содержащих токсичные вещества.

    Кроме того, с первого же дня эксплуатации оборудования после химической очистки накипь начинает образовываться снова.

    В последнее время все большее внимание уделяется физическим методам очистки и защиты теплообменного оборудования и в частности с использованием ультразвуковых генераторов, электрогидроимпульсных аппаратов, магнитных устройств. Среди названных методов магнитная обработка обладает следующими преимуществами:

    q простое и удобное обслуживание магнитных аппаратов;

    * небольшие габаритные размеры установки;

    * практически исключается загрязнение окружающей среды, за счет исключения использования химических реагентов;

    * накипеобразование не только предотвращается, но и удаляется старая накипь;

    * за счет образования тонкого слоя магнетита снижается скорость коррозии металла.

    Магнитный способ очистки

    Обработка воды магнитным способом заключается в воздействии магнитных полей на поток воды. При прохождении воды в межполюсном пространстве магнитного аппарата при наличии ферромагнетиков (например, частиц железа – прим. ред.) в пересыщенном по накипеобразователю растворе (воде) образуются зародыши центров кристаллизации, которые начинают расти, вызывая объемную кристаллизацию солей жидкости. В результате вместо накипи образуется тонкодисперсная взвесь, частицы которой, достигнув определенного размера, образуют шлам.

    Источниками магнитного поля в аппаратах магнитной обработки воды могут быть как постоянные магниты, так и электромагниты. Собственно аппараты подразделяются на две группы:

    * с постоянными магнитами — для обработки подпиточной воды паровых котлов низкого и среднего давления;

    * с электромагнитами на постоянном и переменном токе — для обработки воды водогрейных котлов, теплосетей, систем оборотного охлаждения.

    Противонакипной эффект, получаемый при наложении магнитного поля, определяется как параметрами аппарата (магнитная индукция, скорость потока обрабатываемой воды, время воздействия и т.п.), так и во многом показателями качества обрабатываемой воды.

    Метод магнитной обработки воды и предотвращения образования накипи на поверхностях нагрева теплообменных аппаратов получил свое продолжение в методе магнитоимпульсной очистки реализованный в электромагнитных пульсаторах ПЭ (ТУ РБ 99009425.001-99) разработанных Пронским Г.К. Суть метода состоит в воздействии на очищаемые поверхности переменного магнитного поля определенных оптимальных параметров по амплитуде, частоте, скорости нарастания и убывания, закона изменения во времени. Электронный блок формирует импульсный ток, поступающий на электромагнитные преобразователи. Переменное магнитное поле, создаваемое преобразователями, вызывает на поверхностях нагрева магнитострикционные колебания сдвига на межатомном уровне, приводящие к отслоению отложений. В результате происходит отслаивание, дробление, частичное превращение в сметанообразную массу солей накипи и частичное растворение ее намагниченной водой, что позволяет удалять ее из теплообменного оборудования в процессе продувок и дренирования.

    Система защиты от отложений на базе ПЭ устанавливается на работающем оборудовании на весь период эксплуатации и предназначены для магнитной обработки воды с целью разрыхления накипи и шлама и препятствия в дальнейшем ее образования на поверхностях нагрева теплоэнергетического и теплообменного оборудования (водогрейные и паровые котлы, теплообменники и др.).

    Напряжение питания – 36 В. Максимальная мощность – 15 Вт. Напряженность магнитного поля не более – 150 Эрстед. Применяя несколько электромагнитных пульсаторов ПЭ можно защитить все теплообменное и теплоэнергетическое оборудование одной котельной, ЦТП и т.п. По результатам актов испытаний в промышленных условиях начало разрушения и отслаивания отложений от стенок теплообменного и теплоэнергетического оборудования начинает наблюдаться после десяти суток работы электромагнитных пульсаторов ПЭ. В дальнейшем накипь опадает или превращается в сметанообразную массу, смываемую проточной водой.

    Эффективность разрушения и отслаивания накипи на поверхностях нагрева теплообменного и теплоэнергетического оборудования с малым теплонапряжением — до 95% за первый месяц работы.

    Применение электромагнитных пульсаторов ПЭ позволяет эксплуатировать теплообменное и теплоэнергетическое оборудование с поддержанием его технико-экономических показателей в нормативных пределах.

    В настоящее время в Белорусском теплоэнергетическом институте завершаются исследования по выбору и оптимальным условиям использования названных систем защиты для различных типов теплообменного оборудования и различны параметров.

  • Метки , ,
    Опубликовано в: Статьи | Comments Closed

Обратный звонок

Заполните обязательные поля, отмеченные звездочкой!





Нажимая на кнопку Отправить, Вы даете согласие на обработку персональных данных и принимаете условия «Пользовательского соглашения», в том числе п.3 «Политика конфиденциальности».

icq: 645-946-644
  • 27.03.2020
  • Изменение режима работы в период с 28.03.2020 по 05.04.2020г.

  • В целях соблюдения указа Президента РФ об объявлении не рабочей недели в период с 28 марта 2020г. по 5 апреля в связи с ситуацией по распространению новой коронавирусной инфекции COVID-19, сообщаем, что вынуждены перейти на удаленную работу.

  • Подробнее
  • 04.04.2018
  • Отгрузка уровнемера УСК-ТЭ-100

  • Промышленная группа Империя произвела отгрузку скважинного уровнемера модели УСК-ТЭ-100 (диапазон измерений от 0 до 100 метров) в Нижегородскую область. Уровнемер УСК-ТЭ-100 и другие скважинные уровнемеры в период с 01.03.2018 г. по 09.05.2018 г., предлагаются со скидкой -10% от стандартной стоимости прайс-листа. Успевайте сделать заказ!

  • Подробнее
  • 12.03.2018
  • Воздухосборник проточный А1И: снижение цен

  • Проточный воздухосборник А1И является важным элементом системы отопления, необходимым для удаления воздуха из теплоносителя. Вы можете приобрести воздухосборники проточные серии 5.903-2 и 5.903-20 по выгодной цене от 3350 рублей.

  • Подробнее

Измерение уровня подземных вод как основа экологического мониторинга

В сфере гидрогеологии для произведения экологического мониторинга прежде всего необходимо измерить уровень подземных вод. Незаменимым помощником в осуществлении этого является скважинный уровнемер. Уровнемер скважинный представляет собой трос необходимой длины с метками, намотанный на катушку.

далее

Установка абонентских грязевиков системы отопления: необходимость или излишество

Абонентский грязевик применяется для очистки теплоносителя от посторонних частиц грязи, ржавчины и прочих примесей. Нельзя недооценивать, важность применения грязевиков в системах отопления. Их значимость доказала свою эффективность в сложных системах, имеющих в составе большое количество регулирующей арматуры.

далее

Уровнемеры скважинные из наличия со склада в Екатеринбурге

Прмышленная группа «Империя» является поставщиком гидрогеологического оборудования: уровнемеры скважинные, рулетки гидрогеологические, термометры. Продукция реализуется из наличия со склада в Екатеринбурге. Вы также можете заказать изготовление партии в срок от 7 до 15 дней (срок зависит от количества).

далее
center